为了提高工作效率,我们需要对过去一段时间的工作进行总结。总结应该围绕主题展开,同时突出重点和亮点,不应过多涉及细枝末节。总结范文中的亮点和经验可以为你的总结写作带来新的思路。
分数除以分数教学设计青岛版篇一
教学内容:六年级上册第46页例4。教学目标:
1.通过猜想、验证、小组交流等数学活动,理解并掌握分数除以分数的计算方法,能正确地进行计算。
2.在动手分方格和归纳计算方法的过程中,感受数形结合和转化的数学思想方法,发展迁移、归纳、表述的能力。
3.在独立思考、小组交流的学习活动中,体验学习成功的乐趣,增强学好数学的自信心。
一、自主学习。
1.口算。5÷51÷34÷。
24÷。
18÷2。
3÷6。
745557(说明:安排一组口算题,目的有两个,一是口算练习是提高学生笔算能力的重要基础,应贯穿计算教学的始终;二是通过分数除以整数和整数除以分数计算方法的综合思考,便于学生产生“等于被除数乘除数的倒数”的联想。此环节可根据班级实际情况取舍。)2.自学例4。
出示例4。学生读题后容易列出算式:9÷3。
1010通过谈话,相机揭示课题:这节课我们来学习分数除以分数,并板书课题。分数除以分数该怎样计算呢?请同学们根据已有的经验猜想一下并试着算一算,再在课本46页的方格图上分一分,验证自己的猜想。
师巡视学生的试做情况,关注学困生的学习。
(说明:这个环节,通过猜想、动手操作的方式,学生自主探索新知,“让一步”恰当的空间给学生,体现的学生的自主学习。师巡视关注学困生,“停一步”在他们课桌旁驻足观察,及时发现问题,实施“一对一”指导。)。
二、交流质疑1.小组讨论。
小组内交流是怎样计算的,对的要讲出道理,错的要讲出原因,并帮助没学会的同学理解计算方法。
师深入小组参与讨论。(说明:先在小组内交流、“碰撞”、表述思考过程,进一步深入理解自学内容。通过“兵教兵”实现“一对一”辅导,初步调整、修正自学过程中的认知偏差。教师作为引导者、合作者,不要急于评价,要“慢一步”挑明,给学生留出可讲的话题。)2.组际展示。
师:谁能说说是怎样计算的吗?可以是自己的观点,也可以是小组的观点。展示不同的做法,并让学生讲明道理。
师相机点拨,达成共识:9÷3=9×10=3(杯),即分数除以分数等于被。
1010103除数乘除数的倒数。
3.讨论分数除法法则。
师:前面学习了分数除以整数、整数除以分数的计算,今天又学习了分数除以分数的计算,你能用一句话概况分数除法的计算方法吗?请在小组里试着说一说。
(说明:分数除以整数、整数除以分数、分数除以分数的计算方法,学生很难一下子用一句简洁的语言概括出来,所以此处可让学生先在小组交流,然后师生共同优化,用最简洁的语言来表述,以培养学生的语言表达能力和抽象概括能力。)。
三、
检测反馈1.基本练习。
(1)做46页的“练一练”。
在书上完成,展示一名学生的作业,集体订正。(2)做第48页的第9题的第一横行的题目。指名4人板演,小组内交流,有错误的要说说错的原因。2.拓展延伸。
(1)做第48页的第10题。
做后先在小组说说有什么发现,再集体讨论。让学生明白:在进行除法计算时,什么情况下,除得的商比被除数小;什么情况下,除的得商比被除数大;什么情况下除得的商等于被除数。
(2)做第48页的第11题。
做在书上。指名说说是怎样想的。注意引导学生用规律来判断。(3)做第48页的第12题。
通过计算、比较,理解每组中两题算式的不同计算过程,并看一看有什么发现。
3.课堂作业。
做48页第9题的第二横行和第13题。
(说明:课堂作业要当堂、独立完成,确保信息反馈的准确性,以便调整教学进程,对不足之处也能做到有针对性地补救。)。
四、小结反思。
通过这节课的学习,你有哪些收获和体会?
1010数除法转化为分数乘法来计算,把新知识转化为学过的旧知识,运用了转化的数学思想,“数形结合”和“转化”是两种常用的、也是很重要的数学思想方法等。
(说明:小结反思要尽量让学生说,教师要“慢一步”概况。
总结。
要给学生想一想、悟一悟的时间。不仅让学生小结知识点还要注意让学生反思学习方法感悟数学思想以提升学生的认识。)。
分数除以分数教学设计青岛版篇二
学习目标:
1.初步理解分数乘法与除法之间的联系。
教学重点:
教学难点:
一.创设情景导入。
前几天老师在商场买了3包饼干,每包重100克,你们能提出一些问题吗?…3包饼干一共重多少克?100?3=300(克)根据它改编成2道整数除法算式及问题300÷3=100(克)300÷100=3(包)。
小结:除法就是已知两个因数的积与其中一个因数,求另一个因数的运算。
二.引入新课。
如果把整数改成分数,上面的题又该怎样计算?100×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(包)。
通过对比,它们都是已知两个因数的积与其中一个因数,求另一个因数,分数除法的意义与整数除法相同,都是乘法的逆运算。
改写两道除法算式:12×1/215×1/3。
三.出示学习目标:
1.初步理解分数乘法与除法之间的联系。
四.自主学习,合作探究。
现在老师手中有4/5升的果汁,现在要把这杯果汁平均分成2份,每份是多少升?画一画,算一算学生展示计算成果:4/5÷2=4÷2/5=2/5(升)4/5÷2=4/5×1/2=2/5(升)。
通过比较算式,你能发现什么规律?
分数除以整数(0除外),可以用分子除以这个整数,分母不变。也可以乘以这个数的倒数。
如果把果汁平分成3份,又该怎样计算?让学生通过比较发现:第二种方法简单通用。
五.质疑再探。
你还有什么不明白的地方吗?共同探讨六.课堂检测。
练习:用你发现的规律计算下面各题。4/5÷3=。
2/9÷2=。
1/3÷4=。
小结:通过这节课的学习,你有什么收获?分数除以整数的计算方法是怎样的?
分数除以分数教学设计青岛版篇三
教学目标:
1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。
2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。
教学重难点教学重点:分数除法意义的理解和分数除以整数的算法的探究。
教学难点:分数除以整数的算法的探究。
教具准备:课件,平均分成5份的长方形纸一张。
设计意图教学过程特色设计:
一、复习。
复习整数除法的意义。
引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
根据已知的乘法算式:5×6=30,写出相关的两个除法算式。
二、新授。
(一)初步理解分数除法的意义。
1、如果将一盒重千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?
学生试着列出算式。
2、归纳概括分数除法的意义。
1、出示例1、引导学生分析并用图表示数量关系。
问:求每份是这张纸的几分之几,怎样列式?
2、列式计算。
学生折一折,算一算。
3、理清思路。
学生说思路。
4、总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。
三、练习。
第30页做一做。
四、作业练习。
教材p34第1、3、4题。
五、总结。
今天我们学习了哪些内容?
板书设计:
略
分数除以分数教学设计青岛版篇四
1,借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。
2,掌握一个数除以分数的计算方法,并能正确计算。
教学重点。
教学难点。
教学时数。
1课时。
教学过程。
一,创设一个“分一分”的活动。
1,出示:第27页的情境图。
从整数除以整数到整数除以分数,借助除法的意义和图形语言,体会“除以一个数”与“乘这个数的倒数”之间的关系。
2,创设自主的探索空间,让学生通过观察、比较与思考,发现知识的。
内在联系,让学生更好地理解分数除法的意义的机会,更主要的是教会学生一种学习的方法。(即分数除法的意义可联系整数除法的意义进行学习)。
二,画一画。
1,让学生画图个观察,分析图中反映的数量关系。
2,学生体会分数除法的意义和算法。
三,填一填,想一想。
让学生观察、比较、从而发现问题中蕴藏的规律。(进一步理解分数除法的意义)。
四,试一试。
学生巩固对除法计算的理解,重点引导学生先约分再乘,这样算比较简便。
五,练一练。
1,第28页第2题,利用分数除法解方程,既应用了分数除法的计算方法,又为今后用方程解决问题进行铺垫。
2,第28页第3题,利用分数除法知识解决实际问题,给学生交流的空间。集体订正时让学生说说解题的思路。
分数除以分数教学设计青岛版篇五
教学目标:
1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。
2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
3、培养学生迁移、概括的能力。
教学重点:
掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。
教学难点:
理解分数除法的意义,体会数学知识之间的内在联系。
教学准备:
展台。
教学过程:
一、创设情境,激趣导入。
谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。
二、自主探索,获取新知。
1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。
2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。
师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?
师:这个算式表示的意义就是:2里面有几个1/5。
小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。
师:那么,5和1/5有什么关系呢?
4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。2÷2/5=2×5/2=5(个)。
从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。
5、绿点问题。
让学生独立解决,集体交流算式的意义和算法。
小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。
三、自主练习。
1、自主练习第1题。
练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水平。
2、自主练习第2题。
让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。
四、全课小结。
1、今天我们学习了什么新知识?
2、一个数除以分数的计算法则是什么?
3、计算一个数除以分数应注意什么?
分数除以分数教学设计青岛版篇六
在折一折、涂一涂、算一算等活动中理解分数除以整数的实际意义;探索并理解分数除以整数的计算方法,能正确地进行计算。
(二)过程与方法。
结合具体的问题情境,经历分数除法计算方法的探究、推导过程,运用转化的思想领会计算方法的由来。
(三)情感态度和价值观。
在数学学习过程中培养分析能力、知识的迁移能力、推理能力。
二、教学重难点。
教学重点:探究并得出分数除以整数的计算方法,能比较熟练地进行计算。教学难点:对分数除以整数的算理的理解。
三、教学准备。
多媒体课件,折纸。
四、教学过程。
(一)引入操作情境,尝试计算教学教材第30页例1。
教师:把一张纸的平均分成2份,每份是这张纸的几分之几?
教师:你会列式吗?(启发学生列出算式。)。
教师:你会计算吗?请你试一试,然后在组内交流一下你的想法。预设结果:
1.把平均分成2份,就是把4个平均分成2份,1份就是2个,就是;用算式表示是:。
2.把平均分成2份,每份就是的,就是;用算式表示是:。
【设计意图】该阶段的学生已经有一定的自主探究能力,所以采用先让学生尝试的方法,有意识地唤醒学生对旧知的回忆,让学生从已有的知识经验入手,把自己和同伴的真实想法进行交流,充分体现学生的认知基础,有助于理解分数除以整数的算理。
(二)借助直观,实现沟通。
涂上阴影,然后再把阴影部分平均分成2份。)。
预设:学生可能会做出如下两种图示:
教师引导学生交流:这两种图示分别对应着上面哪种算法?指导学生阅读教材第30页,将“图”和“式”对照起来进行分析和说理。
结合图(1),引导学生说理:把x平均分成2份,就是把4个平均分成2份,1份就是2个,就是。
结合图(2),引导学生说理:把x平均分成2份,每份就是的,就是。
教师:同学们说得很好!把一个数平均分成几份,实际上就是求这个数的几分之一是多少。也就是说,分数除法和分数乘法有着密切的联系,分数除法可以转化为分数乘法来计算。
【设计意图】分数除法计算方法的探索与理解,历来是教学的一个难点。结合分数的意义和直观图来沟通分数除法和分数乘法的联系,是得出分数除以整数一般算法的关键步骤,也是理解算理的基础。根据小学生的思维特点,采用手脑并用、数形结合的策略,在教师的指导下进行有效的操作,有意识地将“图”和“式”对照起来进行分析和说理,帮助学生建立图形语言和数字语言的联系,有效地降低难点。通过操作,直观地体会分数除以整数的实际意义。在恰当的时机,引导学生进行文本阅读,整体感知算法的推导过程。
(三)体验冲突,发现一般规律。
教师:把一张纸的平均分成3份,每份是这张纸的几分之几呢?
请你折一折、画一画,自己看图写出计算结果。想一想,你会选择哪一种折法呢?
教师:你会用刚才的方法说明计算结果吗?
预设:通过前面的操作和交流,学生应该能领悟到分子不能被除数整除该选择哪种图示,并能说清:把平均分成3份,每份就是的,即。
教师引导学生折一折、画一画,或者根据教材第30页图示进行填空,写出计算结果。教师:通过刚才的折纸操作和上面的算式,你发现了什么规律?预设结果:
1.分数除以整数,如果分子能被除数整除,那么计算方法是分子除以除数的商作为分子,分母不变;如果分子不能被除数整除,那么转化为求这个数的几分之一来计算。
2.把一个数平均分成几份,就是求这个数的几分之一是多少,也就是都可以转化成乘法来计算,相比这种方法适用的范围更广。
教师:同学们说得很好!看来分数除法可以转化为以前我们学过的分数乘法来计算。
【设计意图】通过交流,诱导学生经历由特殊到一般的探索过程,从中悟出分数除以整数的算理:把一个数平均分成几份,就是求这个数的几分之一是多少。初步体会新旧知识之间、方法之间的转化与统一,比较自然地渗透转化的思想。
(四)应用规律,尝试练习。
教师:请你独立思考并完成教材第30页“做一做”。
【设计意图】对关键步骤进行针对性训练,使学生进一步理解分数除以整数的实际意义,即:把一个数平均分成几份,就是求这个数的几分之一。进一步体会把分数除法转化为乘法具有普适性。
(五)巩固练习,熟练算法。
1.教师:请你完成教材第34页练习七第。
1、2题。
先尝试独立填空,然后组织交流,让学生明白分数除法和分数乘法的互逆关系。
2.教师:请你完成教材第34页练习七第4题。
左边的三个算式的分子都是3的倍数,所以可以用分子除以3,也可以转化为乘法;右边一组的分子都不是3的倍数,只能用一般算法。通过进一步的比较和练习,体会算法的灵活性和一般方法的普适性。
3.教师:下面让我们一起来解决一个实际问题,请你完成教材第34页练习七第3题。
引导学生可以画图来验证自己的计算结果,也可转化为小数来验证自己的计算结果,培养学生的反思意识。
(六)全课总结,交流收获。
教师:今天我们共同学习了什么知识?你有什么收获?
分数除以分数教学设计青岛版篇七
班级姓名小组小组评价。
学习目标:
1、掌握分数乘分数的计算方法,并能运用计算方法熟练进行计算。
2、掌握分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间。
的关系进行正确判断。
3、激情投入,阳光战示,全力以赴,挑战自我。
重点:分数乘分数的简便算法。
难点:因数与积的关系。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本p11页。
2、计算:
3、填空:
1)、×6表示();
×表示();
2)、一根绳子长81米,剪去,还剩这根绳的,还剩()米,这里是把()看作单位“1”。
二、合作探究:
思考:你想到了几种计算方法,有什么技巧?
小结:分数乘分数的简便算法:
例2、比较大小。
思考;你发现了什么规律?
小结:当一个因数大于1时,积()另一个因数(0除外);
当一个因数小于1时,积()另一个因数(0除外);
当一个因数等于1时,积()另一个因数;
三、学以致用:
1、直接写出得。
2、
3、我能辩对错。(对的打“”,错的打“”)。
1)、一个数乘真分数,积小于这个数。()。
2)、几个假分数相乘的积大于1,几个真分数相乘的积小于1。()。
3)、x××x()。
4)、分数乘法的意义与整数乘法的意义相同。()。
5)、如果a×=b×,那么a大于b。()。
4、解决问题:
1)、一根电线第一次用去米,第二次用去的是第一次的,第二次用去多少米?
分数除以分数教学设计青岛版篇八
苏教版义务教育教科书《数学》六年级上册第46页例4、练一练,第48页练习七第9~14题。
:使学生经历探索分数除以分数的计算方法的过程,理解并掌握分数除以分数的计算方法,能正确计算分数除以分数的试题。
使学生在探索分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
多媒体课件。
1、口算。
23÷2 14÷4 512÷10 310÷6。
9÷310 4÷45 2÷314 1÷32。
1、出示例4,学生读题,列式。
提问:这是已知什么,要求什么?用什么方法计算?
追问:为什么用除法计算?怎样列式?
2、引导探索:分数除以整数怎么算呢?
(1)请大家画图探索一下这个算式得多少?
各自在书上的长方形里分一分,画一画。
(2)指名到黑板上画一画,使大家清楚地看出是3瓶。
(3)讨论:分数除以整数,能不能用被除数乘除数的倒数来计算呢?
请大家计算一下它的积,看得数与我们画图的结果是不是一样?(一样)。
得数相同,你能猜想到什么?
3、练习,验证猜想。
完成练一练第1题:先再长方形中涂色表示,看看里有几个,有几个,再计算。
你发现了什么?
4、概括方法。
根据学生的讨论,板书:
1、做“练一练”第1题。
各自练习,并指名板演,练习后评议交流。
2、完成练习七第10题。
3、讨论练习七第11题。
引导:你能不计算,运用已经发现的规律直接填空吗?
4、讨论练习七第12题:
指出:交换被除数和除数,所得的商与原来的商互为倒数。
练习七第9、13、14题。
分数除以分数教学设计青岛版篇九
1.使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,使学生理解已知一个数几分之几是多少,求这个数的数量关系。
2.能够正确、熟练地计算一个数除以分数,并能够用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题。
3.培养学生的计算能力及抽象、概括、分析、比较和综合的能力。
用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题。
一、复习引新。
(一)口算下面各题。
(二)口答分数除以整数的计算方法.。
(三)一个数的5倍是30,求这个数.。
二、讲授新课。
(一)教学例2。
例2.一辆汽车小时行驶18千米,1小时行驶多少千米?
教师提问:题中已知什么,求什么,怎样列式?
质疑:除数是整数的分数除法我们会计算了,除数是分数的除法怎样计算呢?这节课我们就继续来研究分数除法,(板书课题:一个数除以分数)。
教师:例2中求1小时行驶多少千米,可以用一条线段表示,启发学生在图上表示出小时行18千米?(演示课件:一个数除以分数)。
观察:从图上看1小时里有几个小时?(5个小时)。
推想:要想求出5个小时行驶多少千米?就必须先求出什么呢?(小时行的路程)。
(小里有2个小时,2个小时行18千米,用182就可以求出小时行驶的千米数)。
教师板书:
(二)教学例3。
例3.小刚小时走了千米,他1小时走多少千米?
1.分析:已知什么,求什么,怎样列式:
2.比较:和刚才的那道题目哪儿不一样?
3.讨论:这道题如何解答,你从中悟出了什么道理?
4.汇报:求出小时走的,1小时里有10个小时,所以再乘10就求出1小时走的千米数。
5.推导过程:
(千米)。
6.教师提问:在这一过程中什么变了,什么没变?
(三)总结计算法则。
教师说明:不管是整数除以分数,还是分数除以整数及分数除以分数,都可以把它转化为分数乘法进行计算,为了叙述方便,我们把被除数称为甲数,除数称为那乙数。
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
(四)反馈练习。
分数除以分数教学设计青岛版篇十
1、理解分数除法的含义。
2、经历分数除以整数计算方法的探究过程,并能根据题目已知的数据选择合适的方法进行计算。
3、体验合作探究的乐趣,培养学生的协作精神。
2、根据题目已知数据选择合适的方法进行计算。
课件,导学案,达标测验卷。
(一)单元导入,明确目标:
1、出示单元知识树:
这节课,我们继续学习第三单元的分数除法,第三单元主要包括三部分内容:倒数的认识,分数除法,分数除法应用。倒数的认识是上一节课的内容,我们已经学习了乘积是1的两个数互为倒数,这一部分是分数除法学习的基础,而分数除法又包括三个方面:分数除以整数,一个数除以分数,这个数可以是整数,也可以是分数,分数混合运算,包括分数加减法,分数乘除法。本单元的最后一节是对前面两节内容的应用,利用分数除法解决实际中的问题。我们今天要研究的内容是分数除以整数。
2、出示本节课的学习目标:
1.理解分数除法的意义。
在本节课的最后我们要根据各个小组的表现评选出这节课的“优秀小组”。
(二)自主学习,合作探究:
1、出示问题:
把一张纸的4/5平均分成2份,每份是这张纸的几分之几?
师:我们知道,把一个整数平均几份,求每份是多少,用除法计算,而。
把一张纸的4/5平均分成两份,求每份是多少,也可以用除法计算。
列示为:4/5÷2=?
师:分数除法的意义与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
师:4/5÷2=到底如何计算呢?请大家借助手中的正方形纸折一折,也可以在练习本上画一画,还可以借助你学过的旧知识进行验证,开始。
师:你是怎么算的?
师:4/5÷2=可以看做把4个1/5平均分成2份,每份是(4÷2)个1/5,也就是2/5。用式子来表示就是4/5÷2=4÷2/5=2/5。也就是用分子除以整数,分母不变。
师:还有别的方法吗?
师:把把一张纸的4/5平均分成2份,就是求4/5的一半是多少,也就是4/5的1/2,4/5÷2=4/5×1/2,1/2就是2的倒数,把这个式子转化成了分数乘法,用式子表示就是4/5÷2=4/5×1/2=4/10=2/5。
2、比较,优化算法?
师:如果把这张纸平均分成3份,每份是这张纸的几分之几?用你学会的方法进行计算。
由这道题,你发现了什么?
分子是整数的倍数时,分数除以整数(0除外),用分子去除以整数,除得的商做分子,分母不变。分数除以整数(0除外),可以转化为分数乘这个整数的倒数。(任何情况都可以使用)。
(三)巩固训练,拓展提高。
(四)达标检测,课堂小结。
1、完成本节课的达标测验卷。
2、课堂小结:
这节课我们深入研究了分数除以整数的计算,发现分子是整数的倍数时,分数除以整数(0除外),用分子去除以整数,除得的商做分子,分母不变。分数除以整数(0除外),可以转化为分数乘这个整数的倒数。(任何情况都可以使用),下节课我们来一起研究一个数除以分数的计算。
3、评选出本节课的优秀小组。
分数除以分数教学设计青岛版篇十一
教学重点
使学生理解并掌握一个数除以分数的计算法则.
教学难点
用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题.
教学过程
(一)口算下面各题
(二)口答分数除以整数的计算方法.
(三)一个数的5倍是30,求这个数.
(一)教学例2
例2.一辆汽车 小时行驶18千米,1小时行驶多少千米?
教师提问:题中已知什么,求什么,怎样列式?
教师:例2中求1小时行驶多少千米,可以用一条线段表示,启发学生在图上表示出
小时行18千米?.(演示课件:一个数除以分数)
观察:从图上看1小时里有几个 小时?(5个 小时)
推想:要想求出5个 小时行驶多少千米?就必须先求出什么呢?( 小时行的路程)
( 小里有2个 小时,2个 小时行18千米,用182就可以求出 小时行驶的千米数)
教师板书:
(二)教学例3
例3.小刚 小时走了 千米,他1小时走多少千米?
1.分析:已知什么,求什么,怎样列式: .
2.比较:和刚才的那道题目哪儿不一样?
3.讨论:这道题如何解答,你从中悟出了什么道理?
5.推导过程:
(千米)
6.教师提问:在这一过程中什么变了,什么没变?
(三)总结计算法则
甲数除以乙数(0除外),等于甲数乘乙数的倒数.
(四)反馈练习
分数除以分数教学设计青岛版篇十二
本课是在学习了分数除以整数和整数除以分数的基础上进行的,学生已经初步感受到一个数除以另一个数时要变除为乘,去乘除数的倒数。本课则是进一步丰富分数除法的内涵,扩展到分数除以分数,并由此统一分数除法的法则。教材意图让学生利用知识的迁移得出分数除以分数的计算方法,并用一些直观的手段来验证此思路是正确的。练习中,还安排了一些旨在探讨分数除法中的规律(当除数大于1、小于1或等于1时,商相应地小于、大于或等于被除数)的内容。
【本文地址:http://www.pourbars.com/zuowen/9027057.html】