在编写教案时,教师要合理选择教学方法和教学资源,以激发学生的学习兴趣和提高学习效果。教案的撰写应该遵循教学思路的逻辑性和连贯性,使学生的学习过程更加顺畅。以下是小编为大家整理的教案范例,希望能为大家提供一些参考。
长方体的表面积教学教案篇一
教学内容:
苏教版义务教育教科书第6页例4、“试一试”和“练一练”,第8页练习二第1~4题。
教学目标:
1、使学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
2、使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
3、使学生进一步感受立体图形的学习价值,增强学习数学的兴趣。
教学重点和难点:
理解并掌握长方体和正方体的表面积的计算方法。能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
教学准备:
长方体模型、框架,课件、长方体形状的纸盒等。
教学过程:
一、复习准备。
谈话:前两节课我们探索了长方体和正方体的基本特征,这节课我们继续学习有关长方体和正方体的知识。
提问:长方体有几个面?这几个面之际有什么关系?他们可以分为几组?正方体呢?
二、探究新知。
1、探究长方体表面积的计算方法。
在交流中明确:只要算出这个长方体六个面的面积之和就可以了。
(3)学生独立列式,指名汇报,是根据学生回答进行板书。
(4)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长宽高正确找出3组面中相关的长和宽)。
(5)提出要求:用这两种方法计算长方体6个面的面积之和,都是可以的,请用自己喜欢的方法算出结果。
2、探究正方体表面积的计算方法。
(2)学生独立尝试解答。
(3)组织交流反馈,提醒学生根据正方体的特征进行思考。
3、揭示表面积的含义。
谈话才我们刚才我们在求长方体或正方体纸盒致少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体或正方体6个面的总面积,叫做它的表面积。
三、应用拓展。
1、做“练一练”
先让学生独立计算,再要求学生结合自己的列式和题中的直观图具体说明思考的过程。
2、做练习二第1题。
让学生看图填空,再要求同桌互相说说每个面的长和宽,并核对相应的面积计算是否正确。
3、做练习二第2题。
让学生独立依次完成体重的两个问题,再交流结果。
4、做练习二第3、4题。
指名读题后学生独立解答。
四、全课小结。
板书设计:
长方体的表面积教学教案篇二
3.培养学生的动手操作能力和空间观念.。
教学重点。
建立表面积概念,初步学会计算长方体和正方体的表面积.。
教学难点。
正确建立表面积的概念.。
教学步骤。
一、铺垫孕伏.。
2.标出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?
二、探究新知.。
1、教师提问:什么叫做面积?
(用手按前、后,上、下,左、右的顺序摸一遍)。
2、教师明确:这六个面的总面积叫做它的表面积.。
(二)长方体表面积的计算方法.【演示课件“长方体的表面积”】。
1.学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的.。
2.教学例1.。
做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
第一种解法:
长方体的表面积教学教案篇三
投影出示练习六第l题。
解答练习六第2题,步骤同第1题。
教师:在日常生活和生产中,往往不是算长方体的每一个面的面积,而是需要计算长方体的表面积。
出示例3。
学生读题,找出条件和问题。
让学生看第25页例1下面的“想”,并填好空。然后,引导学生列出算式:6×5×2+6×4×2+5×4×2+6×4。
提问:6×5×2、6×4×2、5×4×2分别求的什么?
学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下,有没有漏算或者重复计算的面,然后让学将计算过程和结果填在书上。
提问:这道题还可以怎么列式呢?
同桌同学讨论,解答。教师巡视。
指名汇报算式:(6×5+6×4+5×4)×2。
提问:问什么先算3个面的面积和再乘以2?
学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。
提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上、下面的面积和,然后再加起来。第二种方法,实现算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)。
提问:哪一种方法更渐变?(第二种)。
前左下。
的宽找错了)。
接着,教师小结:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。
三、课堂练习。
做例1下面的做一做中的题目。先让学生独立做,教师巡视,对有困难的学生给予指导,然后汇报解法,并说出思考过程。
四、全课总结。
长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。
五、布置作业。
练习第3、4题。
将本文的word文档下载到电脑,方便收藏和打印。
长方体的表面积教学教案篇四
教学基本。
内容六年级数学(上册)第二单元教学第15页的例4,以及相应的“试一试”,完成随后的“练一练”和练习四第1~5题。
教学。
目的。
和要。
求1、使学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
2、使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
3、使学生进一步感受立体图形的学习价值,增强学习数学的兴趣。
教学重点。
教学方法。
及手段使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
学法指导。
尝试与教师一同解决问题,积极思考。
集体备课个性化修改。
预习阅读书本15页,了解方程解应用的方法。
教学。
环节。
设计。
一、复习导入。
谈话:前两节课我们探索了长方体和正方体的基本特征,这节课我们继续学习有关长方体和正方体的知识。
提问:长方体有几个面?这几个面之际有什么关系?他们可以分为几组?正方体呢?
二、自主探究。
1、探究长方体表面积的计算方法。
(3)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长宽高正确找出3组面中相关的长和宽)。
(4)提出要求:用这两种方法计算长方体6个面的面积之和,都是可以的,请用自己喜欢的方法算出结果。
2、探究正方体表面积的计算方法。
3、揭示表面积的含义。
谈话才我们刚才我们在求长方体或正方体纸盒致少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体或正方体6个面的总面积,叫做它的表面积。
作
业1、做“练一练”
2、做练习四第1题。
3、做练习四第2题。
4、做练习四第5题。
板书设。
计
执行。
情况。
与课。
后小。
结
长方体的表面积教学教案篇五
教学难点:
如何利用所学知识解决生活实际问题。
教学准备:
长方体,正方体,多媒体。
教学过程:
一、联系实际,揭示课题。
同学们,学校利用这个假期同学们休息的时间,要对我们的教室进行从新粉刷。
在粉刷之前,校方提前进行了资料收集,收集的资料如下:
1.每个教室的长8米,宽5米,高3米;
2.每个教室要对四壁和屋顶进行粉刷;
3.每个教室门窗的面积共20平方米;
4.每个教室要粉刷三次;
5.第一次粉刷每平米用涂料0.5千克;第二次和第三次粉刷每平米只用去涂料0.2千克。
6.我校共有个教室需要粉刷。你能根据校方收集的上述信息帮助校方计算出应该买多少涂料吗?(揭示课题)。
二、师生交流,提出问题。
师:同学们,看到这个课题,你想知道什么?
生1:什么叫表面积?
生2:长方体与正方体的表面积怎么求?它们的表面积之间有什么关系?
生3:学了这些知识有什么用处?
三、师生互动,探究问题。
1.学生操作,解决问题;
(1)请同学们拿出准备好的正方体纸盒,请将这个正方体纸盒沿着棱剪开。(学生操作)我们将正方体沿着棱剪开,就得到了一个正方体表面的展开图。
(出示学生得到的正方体表面的展开图。)。
(2)引导学生观察得到的正方体的展开图,思考:正方体表面的展开图有什么特征?
2.组内交流,发表见解;
(1)正方体表面的展开图有6个正方形的面组成。(2)它们的形状都相同。
(3)它们的面积都相等。
3.教师引导,深入探究;
(1)想一想可以怎么求这6个面的面积总和。先求出1个面的面积,再乘以6,就是这6个面的面积总和。
(2)请你试着求一求你手中的正方体6个面的面积总和。
注意:先测量棱长的尺寸,再计算,取整厘米数。(学生计算)看书巩固,掌握方法;刚才我们计算的就是正方体的表面积,那什么是正方体的表面积?正方体的表面积可以怎么求呢?书上有具体的.介绍,请打开书,翻到p39,看书回答:
四、巧加点拨,学而致用。
1.追随上知,质问质疑。
2.迁移知识,灵活运用。
3.组际交流,发表见解。
4.看书小结,掌握方法。
请打开书,翻到p40,看书回答:
5.引用方法,灵活解答。
长方体的表面积教学教案篇六
教学内容。
教材第33~34页内容及例1。
教学目标。
知识与技能。
(2)理解并掌握长方体表面积的计算方法。
(3)发展学生的空间观念。
过程与方法。
(1)经历长方体表面积的计算方法的探究过程。
(2)通过合作探究培养学生的抽象概括能力、推理能力,发展学生的空间观念。
情感态度与价值观。
(1)培养数学与生活的联系,激发对数学学习的兴趣。
(2)体验合作探究的乐趣。
教学难点确定长方体每一个面的长与宽。
教学准备长方体和正方体表面积展开的教具、视频展示台。学生准备长方体和正方体纸盒各一个。
教学过程。
一、创设情境。
1、说出长方形面积的计算公式。
2、看图回答。
(1)指出这个长方体的长、宽、高各是多少?
(2)哪些面的面积相等?
(3)填空:
上、下两个面的长是宽是。
这个长方体左、右两个面的长是宽是。
前、后两个面的长是宽是。
3、想一想。长方体和正方体都有几个面?
二、实践探索。
1.个别学习-------表面积的概念。
(1)老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、“左”、“右”、“前”、“后”标在6个面上。
(3)你知道长方体或者正方体6个面的总面积叫做它的什么吗?
学生试着说一说。
2.小组合作学习-------计算塑料片的面积。
(1)想:这个问题,实际上就是要我们求什么?
使学生明确:就是计算这个长方体的表面积。
(2)学生分组研究计算的方法。
(3)找几名代表说一说所在小组的意见。
解法(一):(是分别算出上、下,前、后,左、右面的面积之和,然后算总和。)。
6×5×2+6×4×2+5×4×2。
=60+48+40。
=148(平方厘米)。
解法(二):(是先算出上、前、左这三个面的面积之和,再乘以2)。
(6×5+6×4+5×4)×2。
=74×2。
=148(平方厘米)。
(4)比较上面两种解法有什么不同?它们之间有什么联系?
三、课堂实践。
做第26页的“做一做”,学生独立列式算出后集体订正。
四、课堂小结。
你发现长方体表面积的计算方法了吗?
结论:
=长×宽×2+长×高×2+宽×高×2。
长方体的表面积。
=(长×宽+长×高+宽×高)×2。
五、课堂练习。
做练习六的第1、2题,学生口答,学生讲评。
六、课后实践。
做练习六的第3、4题在作业本上。
旁批:
后记:
长方体的表面积教学教案篇七
教学内容:。
教学目的:。
使学生理解长方体和正方体的表面积的概念,在理解概念的基础上初步学会求长方体表面积的计算方法;发展学生的空间观念,培养学生概括、推理的能力。
教具准备:。
长方体牙膏盒一个,长方体和正方体展开的教具各一个,学生准备长方体和正方体的纸盒各一个。
教学过程:。
一、复习。
1.出示长方体的牙膏盒,让学生回答出它的形状后,指出它的长、宽和高,并分别指出和长、宽、高相等的棱。
教师:这个长方体有几个面?每个面是什么形?哪些面的面积相等?
2.教师沿着棱将牙膏盒剪开,再展平,让学生看一看展开后的形状。
二、新课教学。
教师出示长方体纸盒,同时学生拿出各自的长方体纸盒,教师指导学生沿着上面与前面相交的棱、左面与上面、前面、下面相交的棱以及右面与上面、前面、下面相交的棱将纸盒剪开。
让学生看教师演示,教师将剪开的纸盒展平、合上,再展平贴在黑板上,演示时注意让学生观察原来长方体的各个面展平后各在什么位置。
让学生在黑板的展开图中分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面,教师注意订正。
学生将自己剪开的长方体纸盒展平在桌上,并标明“上”、“下”、“前”、“后”、“左”、“右”。
观察展开图,让学生回答:长方体有几个面?每个面是什么形状?哪些面的面积相等?有几组相等的面?上、下、前、后、左、右各个面的长和宽分别是原长方体的什么?(引导学生答出:上、下每个面的长和宽分别是担原长方体的长和宽,前、后每个面的长和宽分别是原长方体的长和高,左、右每个面的'长和宽分别是原长方体的宽和高。)。
学生答完后,将正方体纸盒剪开,并标明“上”、“下”、“前”、“后”、“左”、“右”。教师巡视。(可能有几种展开形状。)。
教师:长方体或者正方体6个面的总面积叫长方体或正方体的表面积。
板书概念。
学生齐读概念后,教师宣布今天主要学习内容。
长方体的表面积教学教案篇八
教学内容:人教版小学数学五年级下册第三单元长方体和正方体的表面积.教学目标:1.知识性目标:让学生理解长方体和正方体的'表面积意义,初步学会长方体和正方体面积的计算方法.
作者:徐晰作者单位:浙江省宁波市鄞州区华泰小学刊名:新课程(教师版)英文刊名:xinkecheng年,卷(期):“”(7)分类号:关键词:
长方体的表面积教学教案篇九
周次3课次(本周第几课时)1。
教学基本。
内容六年级数学(上册)第二单元教学第16页的例5,完成相应的“练一练”和练习四第6~10题。。
教学。
目的。
和要。
求1、进一步巩固长方体和正方体的表面积的含义和计算方法,能根据所求问题的具体特点选择计算方法解决一些简单的实际问题。
2、进一步发展空间观念和数学思考。
3、密切数学与生活的联系,提高学生的学习兴趣。
教学重点。
及难点能根据所求问题的具体特点选择计算方法解决一些简单的实际问题。
教学方法。
及手段通过教学使学生经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。
学法指导。
集体备课个性化修改。
教学。
环节。
设计。
一、复习旧知、导入新课。
二、探究新知。
1、课件出示例5:
启发思考:要求制作这个鱼缸至少需要多少平方分米玻璃,实际上就是求什么?
可以怎样计算呢?
2、出示练一练第1题。
思考:
这张的商标纸的面积就是那几个面积的面积之和?明确就是求侧面积。
作
业1、练一练第1题。
2、完成练习四第6题。
启发思考:解答这个问题是求那几个面的面积之和?
根据给出的条件,这几个面的长和宽分别是多少?
3、完成练习四第7题。
4、完成练习四第8题。
5、完成练习四第9题。
思考:
求五级台阶占地多少平方米实际上就是求什么?
求铺瓷砖的面积实际上就是求什么?
板书设。
计
执行。
情况。
与课。
后小。
结
长方体的表面积教学教案篇十
《长方体的表面积》是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。
讲长方体的表面积之前给学生布置了任务,要求学生自己制作一个长方体和正方体学具,调动学生感兴趣的学习情境,开课时我用学生亲手制作的长方体学具引入新课,学生自己观察长方体有六个面,要想知道长方体的六个面到底有多大,请你利用小组中的学具帮助老师解决。学生通过思考与交流,认识到“要想知道长方体的六个面到底有多大,必须计算出六个面的面积总和”,这时我因势利导指出:“长方体六个面的面积之和叫做它的表面积”,然后再让学生摸一摸、说一说。这样设计既能刺激学生产生好奇心,又能唤起学生强烈的参与意识,产生学习的需求,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
数学来源于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我出示了以下几种情况的练习:比如无盖的玻璃鱼缸、没有底面的洗衣机罩,学生认识到长、正方体的表面积也会遇到许多特殊情况,我们求表面积不可以千篇一律要根据实际情况具体问题具体分析。
因为是从平面到立体,成人看似简单,而对小学生却有一定的难度。学生的作业反映出来的问题屡见不鲜,因为与实际生活联系比较密切的例子比比皆是,有些题学生考虑不全面,有些却是无所适从,刚刚学过长方体和正方体的表面积,有个别学生不分青红皂白,不认真审题,如果在课堂上我能够抓住学生实践的过程适时把展开的`平面图做出点拨效果会更好。有些学生缺乏空间想象力,还是分不清楚具体的面应该怎样求才是它的面积,而且学生缺乏耐心细致,做不到具体情况具体分析,因此在解决实际问题时,失误较多。以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,发展学生的空间观念。例如,礼堂中有四根长方体形状的木柱,底面是正方形,边长是5分米,高5米,这四根柱子占地面积是多少分米?有个别学生依然把底面积和表面积混淆,把简单问题复杂化。
数学知识从生活中来,但是他们生活常识较少,思维跟不上,对所学的知识没有吃透,似懂非懂又不及时追问。应该对教材有更深入的研究,也应该全方位的去拓展学生思维,尤其是长方体和正方体这一部分内容,在生活中学生对长方体可以说司空见惯,在学习新知时学生也是兴味盎然,积极性很高,但数学知识具有高度的抽象性,今后要多引导学生在动手操作中思考加工,培养技能技巧,促进思维发展,在平时的教学中有时怕学生在课堂上忘乎所以,不好组织,所以尽量避免让学生动手操作,今后也应吸取本次的经验,尽可能的让学生多动手,动手的同时也会拓展学生的思维,达到举一反三,触类旁通的效果。
以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。并给学生机会,让学生充分发表自己的见解。
长方体的表面积教学教案篇十一
老师们在讨论《长方体的表面积》一节时,常常会有几点疑惑:一是前节刚上过《展开与折叠》,这节有什么必要再把长方体再展开?二是教材为什么要安排“估算”?三是教材中的正方体图形有什么必要同时给出三个棱长的数据?对这几个问题,我是这样看的:
立体图形的表面积,求的是面积。既是面积,就是平面几何的研究对象,因此,从逻辑上说,教材在这里必须要把立体问题转化为平面问题,才能用面积的概念去给表面积下定义。在平面几何里,所讨论问题的前提都是“在同一平面上”,因此,要再次展开。
三维立体空间与二维平面空间的图形的相互转换,是空间想象能力的重要组成部分。由于技术的限制,对于立体图形,目前我们在教材里呈现给学生的只能是“三维示意图”(实际上是二维图形)。因此,学生的三维空间想象能力常常具体地体现为“让‘三维示意图’立起来”。而学过立体几何的人都知道,未来学生解决立体几何问题时,最重要的意识与能力就是“转化”,即把三维问题转化为二维。本节对立体图形与平面展开图形的对应关系的讨论,意在加强面与体的联系,培养学生的转化意识,进一步发展学生的空间想象能力。
教材在“估一估,算一算”的小标题下,提出:“做上面的纸盒,至少需要用多少纸板?先估一估,再精确计算。”
我认为,这首先是一个实际应用问题,是做纸盒时必然要遇到、要解决的问题。既然从生活中提出了做纸盒,就理所当然地要服从生活逻辑。
其次,这里说的是“至少”,也就是,估算时应当“往大里去”。因此,可以是用最大面的面积乘以6,也可以是把整个展开图看成一个大的长方形的局部。这样处理,就不会跟后面精确计算的过程重复,也就不会显得多余。
更重要的是,估算技能是一种重要的数学技能,估算意识是一种重要的数学意识,重视估算,是新课标、新课程对传统数学教学的最显著、最重要的改进之一。本节的引例又确有估算的实际需要,因此,教材在本节安排估算是很有道理的。
本节的课题是《长方体表面积》,而非过去教材的《长方体、正方体的表面积》。在教材的正文中实际上只讨论了长方体的表面积,而对正方体表面积只是在“试一试”中作为长方体表面积的一个应用给出。在“试一试”里给出的条件是“棱长为0.8米的正方体”,而在紧接着的“练一练”中,给出的正方体图形则标明了三维的数据。
我认为,这段教材的意图是:让学生由“正方体是特殊的长方体”,套用长方体表面积的算法来计算正方体的表面积。教师在教学中,不应当把“正方体的表面积等于棱长平方乘以6”处理为学生的“已知”,而必须让学生经历简单的推理过程。也就是,要把“棱长为0.8米的正方体”转化为“长、宽、高都是0.8米的长方体”,然后,套用长方体表面积的计算方法,再简化为“棱长平方乘以6”。否则,在数学逻辑上就是不严密的。
长方体的表面积教学教案篇十二
学生在高年级学习了“长方体表面积的计算”以后,对标准长方体的表面积计算问题都能够熟练掌握,但是对现实生活中触及计算长方体表面积的问题就不能正确进行计算,比如以下几道题:。
这几道要正确计算不但要掌握长方体表面的计算方法,而且要求学生计算时要能够正确判断计算的是哪几个面的面积之和。刚开端教学时学生呈现了错误就给学生阐发、改正,但是效果并不明显,学生遇到这些问题时又发生了错误。后来经过认真阐发、寻找缘故原由,发现学生不能够正确进行表面积的计算是对长方体的认识掌握不扎实,没有树立正确的空间观念,缺乏对物体的空间想象力。
随着新课程的学习,在进行长方体表面积计算的教学中重视了学生空间想象力的训练,学生在学习完好长方体表面积之后办理了这一类问题错误明显减少了。
(一)让学生拿出自已做的长方体模型,指出长方体的长宽高,说出如何计算上下、前后、左右每个面的面积,随后变换长方体模型放置方向进行练习。
(二)脱离长方体模型,一名同学口述长方体放置方法,其它学生想象判断上下、前后、左右每个面如何计算。
(三)针对长方体实例或者详细放置好的长方体模型,比如长八厘米、宽六厘米、高五厘米的长方体,八×六求的哪一个面的面积?……通过这样练习,学生在头脑中正确的把长方体图形和详细实物能够联系起来,能够凭据实物想象出基本图形,而且能够凭据想象把立体图形剖析成简单的平面图形,这现实上就是我们所说的空间观念的培养。学生办理上面三道现实问题,就是对学生空间观念的评测。学生空间观念是否正确,通过在现实操作、在办理现实问题中进行检验,随时发现问题、改正毛病,逐步形成正确的空间观念。
当我把问题:“用八个一立方厘米的小正方体凭借想象表现出一个表面积最大的长方体、一个表面积最小的长方体”展现在学生面前时,发现并不如我所预料的学生无法办理。有的学生说出了:长八厘米、宽一厘米、高一厘米,长四厘米、宽二厘米、高一厘米,长二厘米、宽二厘米、高二厘米,另有的`学生画出草图。让我深深体会到学生的确拥有不可估量的潜力。只要我们为学生创设出一个能展现他们才气的时间和空间,隐藏在学生头脑中的潜力就会如埋藏在地下的能量喷涌而出。
长方体的表面积教学教案篇十三
今天,我进行了《长方体、正方体表面积》的新授教学。这部分知识是学生学习的重点和难点,因为求表面积的问题,与生活联系得特别紧密,要想正确解决这些问题,就需要学生有一定的空间想象能力和灵活解决问题的能力,即思维的灵活性。而这些能力的培养必须建立在学生对长方体、正方体特征的切实掌握、对面与棱关系的正确分析的基础之上的。其实要想让学生记住长方体、正方体表面积的计算方法并不难,难的是正确理解。以前在教学这部分知识时,学生在解决问题时的正确率并不高,有些学生甚至到期末的时候还会出错,究其原因就是他们并没有正确理解表面积的意义,以及理解表面积计算方法的实质。所以在上这节课之前,我认真备课,既备知识点,更要备怎样才能让学生学会的方法。
首先给学生留课前的思考题:长方体有六个面,每个面的长和宽与长方体的长、宽、高有怎样的关系?之所以把这个问题让学生有充分的时间去思考,是因为我认为这个问题想通了,更有利于培养学生的空间想象能力,而且不同学生这方面的能力不同,所需要的时间不同,有了充分的时间,才能更有利于今后的学习。如果我把这个问题让学生在课堂上思考,一是所需要思考的时间会多,而能想通这个问题的人只占少数,剩下的学生听了别人的发言,也不一定会真正地理解,一节课下来,能够真正完成教学目标的人仅占三分之一不到,这样的教学不是我所想要的,更不是成功的。我的目标是实实在在地上课,让所有学生真正地学会。
在今天的课堂上,我从汇报这个思考题入手。我先让学生们把昨天的思考题在小组内交流一下,然后再进行全班汇报。第一个回答的学生是左一男,他是上个学期才转到我们班的,刚转来时成绩倒数,但他非常努力,他的答案非常正确,我表扬他说:“他在家对老师的问题做了充分地研究,归纳得非常到位。”“但是说得太快,可能有人没听清楚,谁能先来告诉我上下两个面的长和宽与长方体的长、宽、高有怎样的关系?”一位同学回答:“上下两个面的长就是长方体的长,宽就是长方体的宽。”“前后两个面呢?”“前后两个面的长是长方体的长,宽是长方体的高。”“左右两个面呢?”“左右两个面的长是长方体的宽,宽是长方体的高。”“谁能把这三句话连在一起说一遍?”金意林完整地说了一遍后,我又让同桌在一起说一遍。最后我问谁还不太懂?只有郑浩一个人不太明白,我安排了两个同学课下再跟他研究一下。
弄清了这个关系,再让学生研究一个计算表面积的方法。学生说太简单了,我说简单就用数学语言表示出来,写在你的练习本上。在巡视的过程中,有的学生写:上下面+左右面+前后面,我提醒:上下面的面积怎么求呢?他则改成了长乘宽乘2+长乘高乘2+宽乘高乘2;有的学生嫌写字麻烦,直接用字母来表示……我看到绝大多数学生都找到了正确的方法,全班汇报时,他们脸上显现的笑容特别灿烂!
走在学生热烈的交流中,我欣喜地感受到了,学生们不是套用公式,而是真正地理解了表面积的计算方法。更说明本节我抓住关键问题,引发思考,想通了这个问题,也就解决了本节课的重点和难点。这是我几次教学表面积这节课最成功的一次。
长方体的表面积教学教案篇十四
老师们在讨论《长方体的表面积》一节时,常常会有几点疑惑:一是前节刚上过《展开与折叠》,这节有什么必要再把长方体再展开?二是教材为什么要安排“估算”?三是教材中的正方体图形有什么必要同时给出三个棱长的数据?对这几个问题,我是这样看的:
一、本节为什么要把长方体再展开?
立体图形的表面积,求的是面积。既是面积,就是平面几何的研究对象,因此,从逻辑上说,教材在这里必须要把立体问题转化为平面问题,才能用面积的概念去给表面积下定义。在平面几何里,所讨论问题的前提都是“在同一平面上”,因此,要再次展开。
三维立体空间与二维平面空间的图形的相互转换,是空间想象能力的重要组成部分。由于技术的限制,对于立体图形,目前我们在教材里呈现给学生的只能是“三维示意图”(实际上是二维图形)。因此,学生的三维空间想象能力常常具体地体现为“让‘三维示意图’立起来”。而学过立体几何的人都知道,未来学生解决立体几何问题时,最重要的意识与能力就是“转化”,即把三维问题转化为二维。本节对立体图形与平面展开图形的对应关系的讨论,意在加强面与体的联系,培养学生的转化意识,进一步发展学生的空间想象能力。
二、为什么要安排“估算”?
教材在“估一估,算一算”的小标题下,提出:“做上面的纸盒,至少需要用多少纸板?先估一估,再精确计算。”
我认为,这首先是一个实际应用问题,是做纸盒时必然要遇到、要解决的问题。既然从生活中提出了做纸盒,就理所当然地要服从生活逻辑。
其次,这里说的是“至少”,也就是,估算时应当“往大里去”。因此,可以是用最大面的面积乘以6,也可以是把整个展开图看成一个大的长方形的局部。这样处理,就不会跟后面精确计算的过程重复,也就不会显得多余。
更重要的是,估算技能是一种重要的数学技能,估算意识是一种重要的数学意识,重视估算,是新课标、新课程对传统数学教学的最显著、最重要的改进之一。本节的引例又确有估算的实际需要,因此,教材在本节安排估算是很有道理的。
三、正方体图形为什么要给出三棱长?
本节的课题是《长方体表面积》,而非过去教材的《长方体、正方体的表面积》。在教材的正文中实际上只讨论了长方体的表面积,而对正方体表面积只是在“试一试”中作为长方体表面积的一个应用给出。在“试一试”里给出的条件是“棱长为0。8米的正方体”,而在紧接着的“练一练”中,给出的正方体图形则标明了三维的数据。
我认为,这段教材的意图是:让学生由“正方体是特殊的长方体”,套用长方体表面积的算法来计算正方体的表面积。教师在教学中,不应当把“正方体的表面积等于棱长平方乘以6”处理为学生的“已知”,而必须让学生经历简单的推理过程。也就是,要把“棱长为0.8米的正方体”转化为“长、宽、高都是0.8米的长方体”,然后,套用长方体表面积的计算方法,再简化为“棱长平方乘以6”。否则,在数学逻辑上就是不严密的。
长方体的表面积教学教案篇十五
长方体表面积的计算一课是在学生已经认识了长方体的特征的基础上学习的,这部分内容对于学生来说并不困难,只要把六个面的面积相加就行。然而在实际应用中,特别是遇到特殊情况,比如鱼缸、粉刷教室用材、通风管道等,有很多学生往往不能分清哪些面不需要计算,或是应该怎样计算?教材中计算表面积时是让学生先想象出展开图,再根据展开图各个图形的面积来选择计算出所求面积。
面对以往学生在学习时出现的较高的错误率,我在教学时便采用了让学生“钻”进长方体里求表面积的方法。
我首先让学生环顾四周,把我们的教室看做一个长方体,而我们就生活在这个长方体的世界里,而后我让学生分别指出这个长方体----教室的的顶点、相交于同一顶点的三条棱各叫什么?屋顶的面怎么求?前后的面怎么求?在竞赛的氛围中同学们都能很快地说出每个面的面积的求法。接着我要求学生换方向,与原来方向成90度,接着提问:“现在前面的面积怎么求?左面呢?上面呢?”从而使学生明白,长方体摆放的位置不同,求每个面的面积所用的条件也有所不同,要根据具体的长方体摆放的位置,来决定求每个面的面积应该用哪些条件。经过这样训练,学生不但能理解每个面的长与宽和原来长方体的长、宽、高的关系,而且还能根据我所给出的数据说出每个面的面积,再算出长方体的表面积。在遇到计算特殊物体的表面积,如鱼缸、通风管、游泳池等,我启发学生先钻进“盒子”里,再想象应该计算哪些面的面积,哪些面的面积不用算,这大大地提高了解答的正确率。
一般的教学是让学生想象展开图再进行计算,由于这个图是虚拟的,对学生的空间观念要求比较高。而“钻”进长方体,长方体的各个面就围绕在学生的四周,使学生感觉实在,从而利用直观的看就知道了哪个面不求,还可以用手比划一下,想清楚这个面的长与宽各是多少,再求出面积。这样的做法,对于空间观念比较弱的学困生来说,多了一根思维的“拐棍”。因此,在解决长方体的表面积实际问题时,我经常可以看到有些同学不时的抬起头或转过头看墙壁,有的还用手指偷偷比划着。我知道,他们此时,正“钻”进长方体里。
当然教学中仍存在着一些不足,如没有强调计算必须在单位统一的前提下才可以进行,造成一道练习题的错误率很高。这也是从一个侧面教育学生要养成良好的。平行四边形面积教学反思国土面积教学反思多边形面积教学反思。
长方体的表面积教学教案篇十六
长方体和正方体的表面积这部分内容,是教材第二单元长方体(一)的一个重点,也是难点。它是在学生认识掌握了长方体和正方体特征的基础上教学的。教学的难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看,摸一摸等来认识概念,理解概念。
首先让每个学生准备一个长方体纸盒,把纸盒沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,让学生注意展开前长方体的每个面,在展开后是哪个面。为了便于对照,让学生在展开后的每个面上,分别用“上”、“下”、“前”、“后”、“左”“右”标明他们分别是原来长方体的哪个面。然后,提问:长方体有几个面?哪些面的面积是相等的.?引导学生联系长方体的特征回答。这里关键是根据长方体的长、宽、高,正确的判断每个面的长和宽应该是多少。让学生按照上、下、前、后、左、右的顺序,依次说出每个面的面积怎样算的。
我在设计《长方体和正方体的表面积》这节课时,主要是沿着什么是长方体的表面积——怎样求长方体的表面积——为什么求长方体的表面积这样一条线来安排教学的。在教学实践中,我发现对教材的深度钻研和对学生的预设显得尤为重要。课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的面积再乘以2;对于今天提出的把侧面的四个面展开看成一个长方形求面积,再加上上下两个面的面积的巧妙方法却没有考虑到。实际生成时,学生只说出了其中的一种简便情况,如果我在课前有更深入的研究,还可拓展学生思维,引导学生找出第四种方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。
实践表明,只有深入研究、充分预设的课堂教学才能使不同学生得到不同的发展,才可能出现意外的惊喜和美丽的风景。以后教学中我将在课前加大研讨、分析力度,提高课堂教学实效性。
长方体的表面积教学教案篇十七
一、继续抓好计算。我发现有很大一部分学生方法懂了,计算却出错了,孩子们的借口是数字太大容易出错。所以计算应是常抓不懈的。
二、进一步培养学生的抽象思维能力。学生出错的原因之一是分不清底面是哪两条棱相乘的面积,之所以这样是因为对长方体革面的人是没有理解透彻。
三、进一步在学生“乐学”方面下功夫,从这一节课看数字是大点,算起来复杂些,孩子们就觉得没趣了,有部分学生对数学有了畏惧的念头,这是最不利于我们教学的因素之一。
四、通过让学生自己动手剪、看观察分析得出表面积的几种计算方法,学生能自主探索出表面积的计算方法,学习兴趣较浓,且对计算方法也掌握的较好,避免了死记公式的办法。
五、在学生掌握了表面积的计算方法后,再出示一些生活实际应用题,既练习了实际又提高了学生学习的兴趣。
长方体的表面积教学教案篇十八
本节课在制定目标的时候,从数学研究方法这个方面着手,在学生掌握知识的同时,更注重让学生了解科学的数学研究的过程。一堂课的知识目标是很容易达成的,但是如果要渗透数学思想方法或科学的研究方法,往往会给我们一线教师带来很多困难。在这节课中,我引导学生通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结果,并进行应用。
当我们说要研究2、5的倍数的特征时,学生想当然地会认为只要一个数一个数地研究就可以了。如果让他们实际操作,他们很可能会写了几个数后,就下结论,当然这时候他们下的结论也很可能是正确的。大部分老师在这样的情况下,就会肯定学生的结论,然后进行练习巩固。
但是教师并没有满足于此,而是抱着科学严谨的态度。仅仅几个数就能得出结论了吗?答案显然是否定的,一项结论的得出不是这样草率的。如果教师如此这般教学,一次两次不要紧,长久以来,学生也会形成草率的态度,以偏概全,缺乏一种科学的严谨,这是很可怕的。所以我们看到,首先教师引导学生确定了“小范围”的意识,在数据比较多的时候,我们可以先确定一个范围,在有限的时间里研究这个范围中的数的特征,得到在1-100这个范围内5的倍数的特征,个位上的数字是5或0。这时候教师没有满足于此,而是引导学生认识到这个结论仅仅适用于1-100这个小范围,是不是在所有不等于0的自然数中都使用呢?还需要研究。所以接下来在教师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。只有进行了研究,才能得到正确的结论,最后在学习和生活中进行应用。
在教学2、5的倍数的特征之前,教师找了几个学生访谈,想了解学生学习的前在状态,当然所找的学生是各种层次都有的'。对于2、5的倍数的特征,应该说比较简单,所以中等学生和优等生都已经知道了它们的特征——2的倍数肯定是双数,5的倍数末尾是5或0,只有个别学困生一无所知。同时有个奇怪的现象,所有知道这个结论的同学都认为这个结论非常正确,以后就能用这个结论来进行判断,不需要进行验证,当然他们的结论获得也仅仅是“知道”的过程,没有经历“探究”过程。如果长此以往,学生仅仅是知识的接受者,而不是知识的探究者,以后将只习惯于被动接受,而不会主动发现。
有了这样的猜想,最后通过举例的方法验证后,学生没有找到反例,这时教师才告诉学生,一开始的猜想现在变成了结论。虽然同样是一句话,不同的时候有不同的界定,没有经过验证前,只是猜想;只有研究后,猜想才可能变成结论。
相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论,当然我们教师也要鼓励学生大胆猜想。并用适当的方法来验证自己的猜想,从而得到正确的结论。
随着新课改的不断深入,我们教师在制定教学目标时,不要再仅仅关注学生知识目标,更重要的是要关注学生的能力目标,只有从小培养,从小渗透,那么我们学生对数学的认识才会更深刻,也才会在数学上有更大的造诣。
长方体的表面积教学教案篇十九
新课程倡导学生学习有用的数学,并尽可能在有趣的情境中进行学习。教学《长方体表面积》这一课时我也在努力着,力求让学生乐学、学懂、学会,并在教学中不断地调整自己的思路。先是从生活实际出发,求长方体表面积的方法。。接着解决为什么要求长方体的表面积(学有用的数学),解决生活中,如:包装盒子、粉刷墙壁等不是都求六个面的表面积的具体问题,即组织学生完成“练一练”的题。反思如下:
一、继续抓好计算。我发现有很大一部分学生方法懂了,计算却出错了,孩子们的借口是数字太大容易出错。所以计算应是常抓不懈的。
二、进一步培养学生的抽象思维能力。学生出错的原因之一是分不清底面是哪两条棱相乘的面积,之所以这样是因为对长方体革面的人是没有理解透彻。
三、进一步在学生“乐学”方面下功夫,从这一节课看数字是大点,算起来复杂些,孩子们就觉得没趣了,有部分学生对数学有了畏惧的念头,这是最不利于我们教学的因素之一。
四、通过让学生自己动手剪、看观察分析得出表面积的几种计算方法,学生能自主探索出表面积的计算方法,学习兴趣较浓,且对计算方法也掌握的较好,避免了死记公式的办法。
五、在学生掌握了表面积的计算方法后,再出示一些生活实际应用题,既练习了实际又提高了学生学习的兴趣。
将本文的word文档下载到电脑,方便收藏和打印。
长方体的表面积教学教案篇二十
本堂课的内容是在学生学习了长方体和正方体的认识之后呈现的,是学生所接触到的第一节立体图形相关数值的计算,同时也是教学其它立体图形数值计算的基础,其地位非常重要。
1、知识目标:让学生在操作、观察活动中,自主探索并理解长方体、正方体的表面积及其计算方法,并能正确计算。能结合具体情境,解决生活中一些简单的问题,体会数学与生活的联系。
2、能力目标:培养学生自主探索、合作交流的能力;丰富学生对现实空间的认识,发展初步的空间观念。培养学生的动手操作能力和共同研究问题的习惯。
3、情感目标:调动学生学习的积极性,培养学生积极自主探索、互助学习的精神,在评价中获取更多情感,同时学会欣赏他人;通过亲身参与探索实践活动,去获得积极的成功的情感体验;体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。
重点:理解长方体表面积的含义;理解并掌握长方体表面积的计算方法。难点:根据给出的长方体的长、宽、高,迅速确定每个面的长和宽,这也是正确计算长方体的表面积的关键。
目前五年级学生的思维能力主要是直观形象到逻辑思维的过渡阶段,学习的动机主要是直接动机为主,认知水平不是一次性完成的,是逻辑滚动的,并且在学这部分内容之前,学生已经直观认识了长方体、正方体,并已经学会长方形、正方形等平面图形的计算。只有充分了解自己学生的基础和实际情况,才能有效的进行合理的教学。
1、我采用“看看、说说、练练、议议”轻松教学法直奔教科书练习六的第1和第2题,使学生初步理解长方体表面积的概念。我于课前制作练习六的第1题的三个长方体图形的课件。先通过动画演示,激发学生的学习兴趣,直观地看到这三个图形的长、宽、高,然后用动画效果使前面变红并不停地闪动,让学生依次说出每个面的长与宽是多少,并计算其面积,接着用同样办法让学生练习计算出其佘5个面的面积和另外两个长方体各个面的面积,最后让学生议论长方体表面积的概念和计算方法。
2、用动画效果,直观演示长方体和正方体展开前与展开后的样子,进一步理解长方体和正方体表面积的概念。我用三维立体动画制作长方体和正方体展开效果的课件,使学生分清长方体和正方体上下、左右、前后六个面的关系,弄懂前面和后面、上面和下面、左面和右面面积相等,掌握6个面的总面积就是长方体和正方体表面积。
3、通过具体的实物演示,使学生加深理解长方体和正方体表面积概念。让学生拿出课前准备好的长方体和正方体纸盒,跟着老师在外面标出上、下、前、后、左、右,再沿着棱剪开后展开,看看展开后的形状,再按照展开前标出相应的上、下、前、后、左、右。
4、在教学例1时,我用三维立体动画电脑课件,动画演示,直观形象。让学生说出上、下、前、后、左、右每个面的长和宽是多少,弄清它们与原来的长方体的长、宽、高的关系,从而找出求长方体表面积的规律。
长方体电脑课件
(一)、实物引入、提示课题、明确目标(创设问题情境)
(1)感受长方体表面积的意义。
师:同学们说的非常好。刚才我们想对长方体的那些部分进行包装?
生:长方体的6个面。
师:那么,什么是长方体的表面积呢?师:老师手中有一个展开的长方体,你发现了什么?
生1:我发现原来的立体图形变成了平面图形。
生2:我发现长方体的外表展开后是由6个长方形组成的。
师:说得对!请你把你刚才涂色的长方体,展开,看看展开后的形状,然后在展开后的图形中,分别用“上面”、“下面”、“前面”、“后面”、“左面”、“右面”标明6个面。
(2)、认识长方体表面积的含义。
师:从学生手中选一个长方体展开图,贴在黑板上。
问:通过观察课件和动手操作实物模型,谁知道什么叫做长方体的表面积?
生1:长方体的表面积,就是指长方体物体表面的面积。
生2:长方体的表面积,就是指长方体上下、前后、左右六个面的面积总和。
生3:简单地说就是把长方体六个面的总面积,叫做它的表面积。
师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?
(3)探求表面积的计算方法
各小组先把手中长方体包装好。独立思考如何求它的表面积?然后小组交流。一人执笔三人汇报看哪个组的方法最多。各小组学生交流汇报结果。可能有以下几种:
生(3):求出上面,求出前面,求出左面,然后用它们相加的和,再乘以2,就得出六个面的总面积。因为长方体六个面中,分别有三组相对面的面积相等。s=2(s上+s左+s前)
生(4):侧面积加2个底面积.s=c底xh+2s上
师:你们计算的很准确!长方体学具是一个长、宽、高不等的长方体,你们能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的'。
师:长方体或正方体6个面的总面积,叫做它的表面积。在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。
师:关于长方体表面积怎样计算大家还有问题吗?请仔细阅读教材,有问题提出来。
师:出示长方体牙膏盒,能计算出它的表面积吗?
生:齐声回答“能!”过了一会说:不能。
师:为什么?
生;因为不知道每个面的长和宽各是多少?
师:对!要想求出牙膏盒的表面积需要量出几个数据?分别是长方体的什么?
生:需要量出3个数据,分别是长方体的长、宽、高。
生:我发现这个长方体的宽和高是相等的,所以是一个特殊的长方体。生:列式(略)。
生:能.但它的棱长为多少?
师:棱长为0.8米.生:列式.评价.总结正方体表面积公式.
1.知识运用。
(1例
【本文地址:http://www.pourbars.com/zuowen/16260938.html】