小学五年级数学的教案(专业16篇)

格式:DOC 上传日期:2023-11-27 23:55:17
小学五年级数学的教案(专业16篇)
时间:2023-11-27 23:55:17 小编:灵魂曲

教案是教师编写,用于指导教学活动的重要文件。教案的编写要注意培养学生的创新思维和实践能力。下面是一些教案范例,供大家参考和借鉴。

小学五年级数学的教案篇一

1、在用小正方形拼长方形的活动中,体会找一个数的因数的方法,培养有条理思考的习惯。

2、在1~100的自然数中,能找出某个自然数的所有因数。

会找一个数的因数。

:提高有序思考的能力。

一、创设情境,激情导入

师:同学们喜欢做拼图的游戏吗?

也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录. 然后,把你拼摆的过程和你的伙伴说说。

二、合作交流,探索新知

1、学生:用12个小正方形自由拼(画)长方形

(教师巡视,指导个别有问题的学生,搜集学生中出现的问题.)

师:你是怎样拼的,说说好吗?

学生代表一边汇报,一边将所拼的图在黑板上进行演示

注意让学生指图说明。

师:我发现同学们真的很聪明,谁愿意把你的想法说给大家听?

(每个小组由一名代表在全班汇报思考的过程,再次体会“想乘法算式”找一个数的因数的方法。)

同学们用12个小正方形摆出了各种各样的长方形,你能用算式表示出你一

共摆了多少个吗?

学生回答,老师同时板演:

(3种,算式一样的可选择其中的一种说出来。)

及时板书:1×12=12 2×6=12 3×4=12

或:12=1×12=2×6= 3×4

师:由黑板上整理出的算式可见,12的因数有哪些呢?

(1、12 、2、6、3、4)

引导思考:找一个数的因数怎样做到即不重复又不遗漏呢?

(通过以上的拼、画、小组交流,学生已经有所发现。)

学生的答案:

(1)我发现积是12的乘法算式中,它们的因数都是12的因数。

(2)我发现可以利用乘法口诀一对对的找12的因数。

师:谁能按顺序说出来?

(1、2、3、4、6、12)

3、小结:找一个数的因数,可以用乘法依次一对一对的找。这样有顺序的给一个倍数找因数,好处就是不重复、不漏找。

三、巩固练习

1、独立完成第38页“练一练”第1题,注意关注学生是否注意有序思考。

2、师:同学们已经掌握了找因数的方法,现在看看谁找得快,请同学们做课本第38页的练一练的第2题。

四、总结与评价

师:这节课你学会了什么呢?用学到的方法我们都可以做些什么?

这节课上下来以后我感想很多,感触也很深。回顾整堂课的教学过程,我认为需要改进的地方还有很多,我只有不断地进行反思,才能不断地完善教学思路,才能更好达到教学目标。下面我就说说我对本课在教学设计上的一些想法和反思。

本课的教学重点是找一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样找一个数的因数,难度并不算大,因此教学例题“找出12的因数”时,我先让学生自己动手拼长方形,让学生们直接感知两个自然数的积等于12的几种情况,使他们在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是12的乘法算式或列出被除数是12的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题。

新课标实施的过程是一个不断学习、探究、研究和提高的过程,在这个过程中,需要我们认真反思、独立思考、交流探讨,学习研究,与学生平等对话,在实践和探索中不断前进。

小学五年级数学的教案篇二

师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)。

一、情境创设,揭示课题。

1、创设故事情境。

2、复习旧知,揭示课题。

(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长宽)。

(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。

(板书课题:平行四边形的面积)。

二、自主探究,操作交流。

1、大胆猜想。

小学五年级数学的教案篇三

1、通过教学,使学生初步理解同分母分数加法的算理。

2、掌握同分母分数加法的计算法则并能正确熟练地计算。

学生在掌握整数加法的基础上,探索同分母分数加法的过程,理解同分母分数的计算法则。

1、分数加法的意义。

2、能正确进行同分母分数加法的计算。

活动1【导入】创设情境

1、(录音内容)我是妮妮,今天想请哥哥、姐姐帮我一个忙。我妈妈烙了一张饼,爸爸把它平均分成八份,爸爸吃了八分之三张饼,妈妈吃了八分之一张饼,我想知道爸爸、妈妈一共吃了多少张饼呢?谁要是能帮我,就奖给大家一个赞,我先谢谢哥哥、姐姐了。

2、师:同学们,能帮助小妹妹吗?那怎么列式(板书式子),今天就让我们共同学习同分母分数加法。

活动2【讲授】学习目标

1、理解、掌握同分母分数加法的计算法则。

2、能正确进行同分母分数加法的计算。

活动3【活动】提示预习内容,学生自主学习

1、自主探究、小组讨论:

(一)师:俗话说:“三个臭皮匠,顶个诸葛亮”,四个人的智慧,一定是很大的,下面就让我们小组合作来探究同分母分数加法。

(二)学生先自主学习,再小组讨论

(三)学生讨论,师个别指导

(讨论中鼓励学生大胆提出个人见解,提示可以借助辅助工具来解题。)

2、汇报交流

生1:同学们,下面由我来代表我们组跟大家分享我们组的做法,大家请看,我是把这张长方形纸当成妈妈烙的饼,我也把它平均分成8份,爸爸吃了3份,我把它折回去,妈妈吃了1份,我也把它折回去,还剩4份,吃了也就是4份,占整张饼的八分之四,结果能约分的要约成最简分数,也就是二分之一。

生:老师,我想对赵红俐的讲解做下点评,你的想法真奇特,能想到加法的逆运算减法来解决问题,你真棒,希望在以后的学习中你能继续发挥你的聪明才智。

生2:大家请看,我们组是用折纸法,我把这张圆看作是妈妈烙的饼,我把它对折三次,平均分成8块,这3块是爸爸吃的,也就是八分之三,这1块是妈妈吃的也就是八分之一,一共吃了4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。

生3:我来为大家讲解说意义的方法,大家请看,我是把这张饼看作单位“1”,把它平均分成8块,爸爸吃了3块,相当于吃了这张饼的八分之三,妈妈吃了1块,相当于吃了这张饼的八分之一,两个人共吃了4块,也就是这张饼的八分之四。结果能约分的要约成最简分数,也就是二分之一。

生4:我们组是用画线段的方法来解答的,我是把一条8厘米长的线段看成是妈妈烙的饼,把它平均分成8份,这3份是爸爸吃的,用来表示八分之三,这1份是妈妈吃的,用来表示八分之一,一共吃了4份,也就是八分之四,请大家注意结果能约分的要约成最简分数,也就是二分之一。

生5:我们组是用画图法来解决的,我是把一张正方形纸看作是妈妈烙的那张饼,把它平均分成8块,爸爸吃的3块,我是用蓝色表示的,妈妈吃的1块,我是用红色表示的,爸爸、妈妈一共吃了4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。

生6:我们组是用切割法来解决的,请八位同学来帮我完成,请大家手拉手紧密的围成一个圆,我把这个圆平均切成8块,这3块是爸爸吃的,这1块是妈妈吃的,一共是4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。

生:我想对陶梦如的做法做一下点评,你的想法很新颖,但在日常的应用中不实用,我建议你可以用小棒来代替人。

生:我觉得小棒易丢,也不实用,可以用手指来代替小棒,因为手指不会离开我们的身体。

生:我觉得手指算小数可以,假如就没法算了,我觉得还是画图比较好。

生7:大家请看表示3个,表示1个,它们两的分数单位都是,所以分母不变,只把分子相加,结果能约分的要约成最简分数,也就是二分之一。

生:刚才大家用这么多方法来探究同分母分数加法,那到底该怎样计算同分母分数呢?

生:同分母分数相加,分母不变,只把分子相加,计算的结果,能约分的要约成最简分数。

师:同桌互记计算法则。

活动4【练习】能力提升

小学五年级数学的教案篇四

1、体验事件发生的等可能性以及游戏规则的公平性及它们的关系,会求简单事件发生的可能性。

2、能根据指定的要求,设计公平的游戏方案。能对简单事件的可能性做出预测。

3、培养概率素养,增强对随机思想的理解。培养公正、公平的意识,促进正直人格的形成。

4、在游戏中体验学习数学的乐趣,提高学生学习数学的积极性。

这是一节有趣的活动课,学生非常感兴趣,在游戏中探索可能性。

体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。

用分数表示可能性的大小。对随机思想的理解。

一.导入引出课题:

1.师:这些小朋友在干什么?(踢足球)如果要开始一场足球赛大家觉得用抛硬币的方法决定谁先开球,这样公平吗?为什么?(课件)

2.揭题:硬币抛出后可能是那些面?(正反面),所以这是一个不确定的事件,今天我们就进一步研究不确定事件发生的可能性。(板书:可能性)

二.用分数表示简单事件发生的可能性

1.猜测:

(1)既然认为是公平的,那么大家想一想正面朝上的可能性是多少?你是怎样想的?

(2)那掷出反面的可能性是多少?为什么?你能用一个数来表示吗?

小学五年级数学的教案篇五

教学内容。

本单元教材主要包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。

平行四边形、三角形和梯形面积计算是学生掌握了这些图形特征以及长方形、正方形面积计算的基础上学习的,它们是进一步学习圆面积和立体图形表面积的基础。学到这一单元结束,多边形面积的计算就基本学完。

组合图形的面积在义务教育的教材中是选学内容。本单元安排在平行四边形、三角形和梯形面积计算之后学习,学生在进行组合图形面积计算中,要把一个组合图形分解成为已学过的平面图形并进行计算,可以巩固对各种平面图形特征的认识和面积公式的运用,有利于发展学生的空间观念。

本单元具体的教学内容分析如下:

1、平行四边形的面积。

通过提出解决比较两个花坛(一个长方形,一个正方形)面积的问题,让学生带着问题自主探索计算平行四边形面积的基本方法,并能运用计算平行四边形面积的方法解决一些实际问题。

2、三角形的面积。

为让学生能自主地探索计算三角形面积的方法,教材除呈现了学生需要解决三角形面积的实际问题外,更重要的是提出了如何把三角形进行转化的要求,这也是学生寻求解决三角形面积计算方法的重要思路。根据不同学生的认知能力,在学生探索三角形面积的计算方法中,教材呈现了多种不同的计算方法以及面积公式推导的方法,目的是在课堂上让每个学生都能充分地参与到探索活动之中。

3、梯形的面积。

这部分教学内容是利用学生前两个基本图形面积计算公式推导的经验,探索梯形面积的计算方法。同时,为了让每个学生都能参与探索活动,教材呈现了多种探索的方法,并说明了不同的探索过程。

4、组合图形的面积。

教材先通过呈现生活中具体物品使学生认识组合图形是由几个简单图形组合而成的。然后要求学生找一找生活中的组合图形,以巩固对组合图形的认识。接着,引导学生学习组合图形面积的计算。所安排的例题及练习除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。

5、整理和复习。

这部分内容先把本单元学过的知识进行系统整理,用图示帮助学生回忆本单元所学习的图形面积计算公式的推导过程,沟通各种面积公式及其推导过程的内在联系,再通过不同层次的练习,巩固已学的各种多边形的面积公式,提高应用公式解决简单实际问题的能力。

小学五年级数学的教案篇六

2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。

小学五年级数学的教案篇七

(1)理解小数乘法的意义和计算法则,会根据实际需要求积的近似数,会计算小数连乘、乘加、乘减,并根据整数乘法的运算定律计算小数乘法。

(2)提高学生计算、估算的能力及观察、分析、判断的能力。

(3)培养学生认真书写、认真计算及时检验的好习惯。

第一课时。

教学内容:小数乘整数。

教学目标:

(1)理解小数乘以整数的意义,掌握小数乘以整数的计算法则,正确地进行计算。

(2)通过运用迁移的方法学会新知识,培养类推的能力。

(3)培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。

重点:

(1)理解小数乘以整数的意义和计算法则。

(2)熟练掌握小数乘以整数的计算方法,能够正确地进行计算。

难点:

理解计算法则的算理。

教学过程:

一、复习辅垫。

1.读题列式,并说一说各算式所表示的意义。

4个13是多少?18个20是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算。)。

小学五年级数学的教案篇八

生1:21.45÷15。

师:我们会计算2145÷15,那么21.45÷15怎么算出它的结果呢?先独立思考,试做一下,然后在小组内讨论吧!

教师巡视,参与小组讨论。

师:哪个小组派个代表来向全班同学汇报:

组1:我们组是把21.45米化成2145厘米,算式就改写成2145÷15,变成了整数除法,结果是143厘米,再把143厘米化成1.43米。

师:有道理!还有不同的做法吗?

组2:我们小组认为,因为2145÷15=143,现在被除数是21.45,也就是缩小了100倍,而除数不变,那么商也缩小了100倍,所以商也应缩小100倍,正确的结果是1.43。

组3:我们小组是列竖式计算出来的。接着把做的竖式放在展示台上展示。

师:各小组都想出了办法,把21.45÷15的结果算出来了。现在老师要提一个问题:哪个小组想的办法更好?今后都能使用。小组继续讨论。

组4:组3想的办法更好,没有局限性,碰到类似的算式都可以用这样的竖式计算。

师:大家同意吗?

(学生齐答:同意。)

师:好,那么大家一起来观察这个竖式。哪位同学要提出什么问题?

生2:商的小数点是怎么来的?

生3:商的小数点是和被除数的小数点对齐。

生2:商的小数点为什么要和被除数的小数点对齐?

师:谁能解决这个问题?

生4:因为商的最高位在个位上,而小数点应该在个位的后面,所以小数点要和被除数的小数点对齐。

生5:如果商的小数点不和被除数的小数点对齐,商就不是1.43,商不是1.43,那么验算的话,商和除数相乘就得不到被除数。

生6:除到被除数的个位时还余下6,这时要跟被除数十分位上的4合起来一起除以15,合起来的数是64个十分之一,所以得到的商是4个十分之一,那么4应该写在十分位上,商的小数点自然就要和被除数的小数点对齐。

师:说的太精彩了!(学生自发地给以掌声鼓励)

师:现在请同学用自己的话向同桌说说除数是整数的小数除法的方法。

……

1、自主探究,小组讨论。教师出示例题后,就让学生独立思考,再在小组内讨论,找到解决的方法,这种把学习的主动权交还给学生,让学生自己去经历探究的过程,有利于方法的掌握和法则的总结。在小组内每个学生能充分发表自己的意见,能听取到别人的意见得到一些启发,也能给别人以提示,最后能在小组内达成一致意见。

2、小组汇报,增加见识。因为在一个小组里形成了一种意见的定势,而通过小组汇报,班级里就会出现不同的见解、思路和方法。这样,让同学大开了眼界,知道解决一个相同的问题,有不同的方案。最后还让学生讨论哪种方案更具代表性和科学性。这样,学生思维的发散性和开阔性不仅得到了培养,而且,学生对“最优化”的意识进一步得到了提高和巩固。

3、问题从学生中来,到学生中去。提出一个问题往往比解决一个问题更重要,学贵与疑。当学生提出问题后,教师不急于回答,马上把问题抛给学生,这样,大胆、充分地相信学生的智慧和能力,给学生以极大的信心。结果,学生果不负教师的期望,一一做了回答。并说得十分精彩。

4、教师是红娘,不是第三者。令人欣喜的是,在这个片段里能听到学生的追问。并且,其他学生,不等教师开口就情不自禁地回答起来。这样的情景是老师最喜欢看到的。出现这样的情景与教师的角色定位是分不开的。

5、变替蝶破茧,为咬茧自出。有意义的学习并非简单的被动接受过程,而是学生主动建构的过程,自主探索是新课程倡导的学生学习数学的重要方式之一,学生总是在自主探索的学习活动中获得亲身的体验,可以说,学生参与自主探索的学习活动越主动充分,所获得的体验就越深刻、丰富,这样,为学生今后的学习和发展就提供了“动力源”,真正实现了“教是为了不教”。

总之,整个片段教学下来,学生的思维得到了发展,能力得到提高,学生的情绪很饱满,参与的积极性很高。但也感觉到有遗憾的地方,致使有的学生还是坚持自己的观点。比如:教师没有进一步引导、讲解和举例,让学生充分认识到“组1:我们组是把21.45米化成2145厘米,结果算式就写成了2145÷15,结果是143厘米,再把143厘米化成1.43米。”这个方案的不足;当组2说出:我们小组认为,因为2145÷15=143,现在被除数是21.45,也就是缩小了100倍,而除数不变,那么商也缩小了100倍,所以商应缩小100倍,得到1.43。”这个方案时,没有让组2的同学充分说出这样做的道理或理由。其实,这个方案就是把被除数看作整数,根据整数除以整数的方法算出商,然后再根据被除数缩小多少倍,除数不变,商也缩小多少倍的规律得到商是1.43。实际上也就是要在商143里点上小数点,追问学生商的小数点该点在哪?这样做了话的话就能和组3同学的方案整合到一起了。可惜,当时老师没有按上面的做法去做。

小学五年级数学的教案篇九

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设法和代数法德一般性。

3在解决问题的过程中培养学生的逻辑思维能力。

感受古代数学问题的趣味性。

用不同的方法解决问题。

课件。

一、激趣导入。

师:咱班同学家里有养鸡的吗?有养兔的吗?既养鸡又养兔的有吗?把鸡和兔放在同一个笼子里养的有吗?在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢?你们想知道吗?这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的“鸡兔同笼”问题。

二、探索新知。

1(课件示:书中112页情境图)。

师:同学们看这就是《孙子算经》中的鸡兔同笼问题。

这里的“雉”指的是什么,你们知道吗?这道题是什么意思呢?谁能试着说一说?

生:试述题意。(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。问鸡兔各几只?)。

师:从题中你发现了那些数学信息?

生:笼子里有鸡和兔共35只,脚一共有94只。

生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。

师:根据这些数学信息你们能解决这个问题吗?这道题的数据是不是太大了?咱们把它换成数据小一点的相信同学们就能解决了。

2、出示例一(课件示例一)。

师:谁来读读这个问题。

谁能流利的读一遍?

请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?

生:读题。

师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。

生:我想我能猜出来。一次猜不对,多猜几次就能猜对。

师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)。

师:还有其他方法吗?

生:我想用方程法也能解决。(板书:方程法)。

生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。

师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)。

师:还有别的方法吗?那这些方法行不行呢?下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。

生:在小组内尝试各种方法。

师:经过上面的研究学习,你们都尝试运用了哪种方法呢?下面以小组为单位进行汇报。

生1:我们小组用列表法找到了答案,有3只鸡,5只兔。

生:很麻烦。

师:是啊,那要花费很长时间。哪个小组还想汇报?

生:我们小组用方程法计算的。(生说计算过程,师板书过程。)。

生:说数量关系。(鸡脚数+兔脚数=26只脚)。

师:根据这个数量关系你能想到另两个数量关系吗?

生:叙述另外两个数量关系。(26只脚—鸡脚数=兔脚数,26只脚—兔脚数=鸡脚数)。

根据这两个数量关系你又能列出哪两个方程呢?

生:汇报师板书两方程。

师:除了可以设兔有x只,还可以怎样设?

生:还可以设鸡有x只。那兔就有(8—x)只。

师:对,那根据什么数量关系你又能列出怎样的方程呢?

生:汇报,根据鸡脚数+兔脚数=26只能列出方程2x+4(8—x)=26。

根据26只脚—鸡脚数=兔脚数能列出26—2x=4(8—x)。

根据26只脚—兔脚数=鸡脚数能列出26—4(8—x)=2x。

师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。

师:除了这两种方法,假设法有运用的吗?

生:汇报。

我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)。

鸡就有8—5=3只。(生说师板书计算过程)。

师:这位同学说的你们听明白了吗?结合算式进行明理。明确每一步算式各表示什么意义。

师:这种方法都明白了吗?结合课件图画进行解释质疑。

生:16只。

师:实际上笼子里有26只脚,怎么会少了10只脚呢?(课件显示)。

生:每只兔子少算2只脚。

师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子,3只鸡了。

生:试做。

师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。

生:练做。

师:谁来说说假设全是兔该怎么算?

生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32—26=6只。一只鸡多算2只脚,4—2=2只。就能算出共有鸡6÷2=3只。兔就有8—3=5只。(生说师板书计算过程。)。

师:你们也都算上了吗?师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢?(课件示)。

生:每只鸡多算2只脚。

师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。

师:还有运用其他方法的吗?

生汇报:列表法适合于数据小的问题,数据大了就不适用了。

方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐。

师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。

三、巩固练习。

师:现在就请你来解决那道数据较大的问题你们能解决吗?

生:独立解答后全班交流。

师:哪位同学愿意说说你是怎么解决这个问题的?

生:汇报不同的算法。(学生边汇报边把计算方法展示在实物展台上)。

师:刚才我们用自己的办法解决了这个问题,你们想知道古人是怎么解决这个问题的吗?我们一起来看一看。(课件示)。

师:古人的办法很巧妙吧?如果大家对这种解法感兴趣,课后可以再研究。

四、全课总结。

师:通过这节课的学习你有什么收获?

生:我学会用……方法解决“鸡兔同笼”问题。

师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。

板书设计:

鸡兔同笼。

列表法。

方程法假设法。

解:设有兔x只,鸡就有2(8—x)只。全看作鸡。

4x+2(8—x)=268×2=16(只)。

2x+16=2626—16=10(只)。

x=54—2=2(只)。

8—5=3(只)10÷2=5(只)。

答:有5只兔,3只鸡。8—5=3(只)。

26—4x=2(8—x)全看作兔。

26—2(8—x)=4x8×4=32(只)。

2x+4(8—x)=2632—26=6(只)。

26—2x=4(8—x)4—2=2(只)。

26—4(8—x)=2x6÷2=3(只)。

8—3=5(只)。

小学五年级数学的教案篇十

教学内容:

教材第88---90页。

教学目标:

1、结合情境,了解方程的意义;

2、会用方程表示简单的等量关系;

3、在列方程的过程中,体会方程与现实世界的密切联系。

教学重难点:

1、了解方程的意义;

2、会用方程表示简单情境中的`等量关系。

教学准备:

情境图、课件、卡片(等式、不等式、方程….)。

教学过程:

一、课前谈话,设疑导入。

1、为什么学习方程?

2、方程是什么?

二、带着问题自主学习,合作交流,建立方程概念。

问题一:为什么学方程?

(一)出示天平,建立等量概念:

左边=右边。

(二)出示情境图分组学习(如书88页称药丸、称月饼、倒水)。

1、小组合作,看图找出等量关系,用式子表示出来。

2、小组汇报,并将式子板书在黑板上。

问题二:什么是方程?

根据小结板书:含有未知数的等式叫方程。

1、读一读:

师:你认为这句话中哪些词语比较重要,试着用声音传达给大家。

2、圈一圈:

师:根据这句话找一找,黑板上的式子哪些是方程呢?把它们圈出来吧。

3、写一写:

师:在数学世界里只有这几个方程了吗?你还能写几个呢?(无数个)(学生独立完成板书在黑板上)。

4、试一试:

含有未知数的式子就是方程吗?举个例子。

等式一定是方程吗?举例。

5、游戏巩固:听口令做动作。

游戏目的:使学生更清楚地认识方程的两个要素:未知数和等式。

游戏规则:请几位学生手拿卡片听口令,如:发令者说:“等式”跳一跳,拿着等式卡片的人就要跳一跳,其他的人不能动。

三、课堂小结:

1、这节课你有什么收获?

2、第89页练一练第1、2题。

四、布置作业。

小学五年级数学的教案篇十一

1、在探索活动中,观察发现3的倍数的特征。

2、能够运用2、3、5的倍数的特征,迁移类推出其他相关倍数问题的解决方法。

观察发现3的倍数的特征。

运用2、3、5的倍数的特征。

活动一:复习巩固。

1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征么?指名说。

2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)。

3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)。

活动二:探索研究3的倍数的特征。

1、在书上第6页的表中,找出3的倍数,并做上记号。

2、观察3的倍数,你发现了什么?先独立完成,看谁找的快。

教师参与到讨论学习中。先独立思考,想己的想法,然后与四人小组的同学说说你的发现。

生一:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。

生二:十位上的数也没有什么规律。

生三:将每个数的各个数字加起来试试看。

3、你发现的规律对三位数成立吗?找几个数来检验一下。

活动三:试一试。

在下面数中圈出3的倍数。

284553873665。

活动四:练一练。

1、请将编号是3的倍数的气球涂上颜色。自己独立完成,在小组内说说自己的想法。

361754714548。

2、选出两个数字组成一个两位数,分别满足下面的条件。独立完成,说说你的窍门和方法。

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5的倍数。

(4)同时是2,3和5的倍数。

活动五:实践活动。

在下表中找出9的倍数,并涂上颜色。可以在自主实践以后再交流。

小学五年级数学的教案篇十二

苏教版义务教育教科书《数学》五年级下册第30~32页例1、例2和“试一试”、例3和“试一试”“练一练”,第35页练习五第1~4题。

1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。

2.使学生经历探索求一个数的因数或倍数的方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。

3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。

认识因数和倍数。

求一个数的因数、倍数的方法。

小黑板、准备12个同样大的正方形学具。

一、操作引入,认识意义。

1.操作交流。

引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。学生操作,用算式表示,教师巡视。

交流:你有哪些拼法?请你说一说,并交流你表示的算式。

结合学生交流,呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。

2.认识意义。

(1)说明:我们先看4×3=12。根据4×3-12,我们就可以说:4和3都是12的因数;反过来,12是4的倍数,也是3的倍数。

(2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的倍数吗?同桌互相说说看。

3.做“练一练”第1题。

先要求分别看乘法算式说说哪个数是哪个数的因数,哪个数是哪个数的倍数。

再让学生把乘法算式改写成除法算式,(分别板书除法算式)然后分别看除法算式说说哪个数是哪个数的因数,哪个数是哪个数的倍数。

二、导探究,学会方法。

1.找一个数的因数。

(1)出示例2,要求学生找出36的所有因数,并思考是怎样找的。

让学生自己找36的因数,并把所有因数记录下来。有困难时可以和同学商量。

交流:36的所有因数有哪些?说说你是怎样找的。

追问:想一想,怎样找一个数的因数可以做到不重复、不遗漏?说明:找36的所有因数,可以按从小到大的顺序想哪两个数的积是36,一对一对地找,也就是这样想:先想1和36,写在因数的两端;(板书)再想2和18.3和12.4和9、(5可以吗?为什么?)6和6,相同的只要写一个。中间还有吗?(结合说明板书成:36的因数有:1,2,3,4,6,9,12,18,36。)。

追问:你能说说找一个数的所有因数时,怎样可以做到不重复、不遗漏吗?让学生按这样的方法把例2里36的因数补充完整。

提问:现在你能说出36的全部因数了吗?(指名按顺序说一说)。

说明:一个数的所有因数,还可以用一个圈表示,请大家看课本上的表示方法,看看是怎样用图表示的。

追问:这个圈里表示的是什么?(呈现36因数的集合图)。

(2)完成“试一试”。

让学生独立找出15和16的所有因数,教师巡视、指导。

交流:15有哪些因数,按怎样的方法想的?16呢?(按一对一对的顺序板书结果)。

(3)发现特点。

2.找一个数的倍数。

(1)引导:我们已经学会了找一个数的因数,那怎样找一个数的倍数呢?现在请你找出3的倍数,把它们记录下来。大家独立试一试。学生自己找3的倍数并且记录下来。

(2)完成“试一试”。

(3)发现特点。

三、练习巩固,应用拓展。

1.做“练一练”第2题和第3题。

2.做练习五第1题。

3.做练习五第2题。

4.做练习五第3题。

5.做练习五第4题。

6.填充。

(1)7的。倍数最小是(),7的因数最大是()。

(2)一个数有因数3,它一定是()的倍数。

(3)8是2的()数,2就是8的()数。

四、课堂总结,交流收获。

提问:这节课你认识了什么知识,学到了什么方法?在学习过程中有哪些收获和体会?

小学五年级数学的教案篇十三

2、掌握几种估算的方法,培养学生的估算意识。

一、新知:

1、教师出示课件与问题:小华出生时,脚印的面积约是多少?

2、学生自己先独立进行估计,然后小组内进行交流。

3、小组推荐人员进行全班交流。

小组1:我们是用数格子的方法来进行计算的,我先数了数整个格子的大约是11个,其他不够一个格子的我进行了拼补,这样大约是17cm2。

小组2:我们的方法也是这样的,我们把不满一格的按照一格进行计算,这样大约是18cm2。

生1:我把这个脚印看成了近似的长方形,长6厘米,宽3厘米,所以面积是3×6=18(cm2)。(学生在实物投影前画出他看的近似图形,学生们表示认可)。

生2:我有个不同的方法,我是看成了近似的梯形,上底是2厘米,下底是3厘米,高是7厘米,根据梯形的面积公式,即(2+3)×7÷2=17、5(cm2)。这样和生1的差不多。

师:回顾一下刚才大家都用了什么方法。

生1:我们用了数一数的方法。

生2:我们把这个脚印看成一个近似图形进行计算。

二、练习。

1、用练习纸估计自己的脚印有多大,同桌互相检查。

2、p78的练一练。

先独立估计,在交流方法。

3、实践活动:怎样计算出树叶的面积?

先讨论,在交流做法,回家之后独立完成。

三、小结。

小学五年级数学的教案篇十四

1、结合解决问题的具体情境,体会面积单位换算的必要性,以及面积单位之间的换算关系。

2、认识公顷、平方千米等面积单位。

3、能进行简单的面积单位换算,解决一些简单的实际问题。

体验1公顷、1平方千米的实际大小,发现平方千米和公顷之间的进率。

正确建立1公顷、1平方千米的表象。

1、引导学生通过观察、比较,自主发现如果用于计量面积很大的土地,需要用公顷和平方千米作单位比较方便。

2、使学生进一步体验解决问题的乐趣,提高解决问题的策略水平。

一、复习铺垫。

1.在括号里填入合适的面积单位。

(1)一张银行卡的面积大约是40()。

(2)数学书的封面面积大约是2()。

(3)我们所在教室的面积大约是50()。

(4)我校田径场的面积大约是1()。

2.我们已经学过了哪些面积单位?联系实际说一说。

二、揭示课题。

面积单位在生产、生活中有着广泛的应用,在此之前,同学已经学习和掌握了平方厘米、平方分米、平方米这些较小的面积单位。在生产、生活中,往往需要度量较大图形的面积,如:某林业局要对当地一块沙漠地区进行绿化,绿化区域是一个长为5千米、宽为4千米的长方形,他的面积是多少?学生列式计算,5000×4000=20000000平方米,即面积是两千万平方米,用学过的面积单位平方米来表示这个较大的数不方便,怎样解决这个问题呢?这就是这节课我们要学的内容。比平方米更大的面积单位“公顷”与“平方千米”。

三、活动感知1公顷的大小。

1.你认为1公顷到底有多大呢?请你发挥自己的想像猜一猜。

2.师指出:边长是100米的正方形(土地),面积是1公顷。算一算:1公顷等于多少平方米?(板书:1公顷=10000平方米)公顷是比平方米大得多的面积单位。

3、2公顷有多大呢?5公顷呢?

4.边长是100米的正方形到底有多大?联系日常生活实例找一找。

5.出示边长为50米的场地。

(1)这个正方形有1公顷吗?你是怎么判断的?

(2)多少个这么大的地方就是1公顷了?你会怎么把它们拼起来呢?

(3)展示各种拼法。

6.出示边长10米(几位同学手拉手为边长)的图。

(1)这个正方形有多大?

(2)多少个这么大的地方就是1公顷了?你会怎么把它们拼起来呢?

(3)展示各种拼法。

8.在我们学校周围有没有1公顷大小的地方?能举例说明吗?

小结:在估计时,你们都运用了什么方法?

(设计意图:通过各种活动,让学生充分感知1公顷的大小,形成1公顷的表象。)。

四、想一想,1平方千米有多大?

1、边长是1000米的正方形,面积是1平方千米。它比两个天安门广场的占地面积还要大。

天安门广场的面积为40公顷,1平方千米相当于几个天安门广场的占地面积呢?比两个天安门广场的占地面积还要大,相当于2个天安门广场的面积。

小学五年级数学的教案篇十五

1、能正确估计不规则图形面积的大小。

2、能用数格子的方法,计算不规则图形的面积。

能用数格子的方法,计算不规则图形的面积。

课件。

一、开门见山,揭示课题。

在现实生活中,学生将接触到大量的不规则图形的面积问题,本节课我们就来学习估计、计算不规则图形的面积。

二、探索新知。

本探索活动分为三个部分,前两个部分主要是呈现了小华出生时与2岁时两个不同年龄段脚印面积的大小,第三个部分是让学生运用自己探究出的方法,估计自己的脚印面积。在开展实践活动时,可以按照教材前后呈现的内容,先讨论估计小华两个年龄段脚印面积的大小,然后采用数格子的方法(不满一格的可以按半格来数)来验证前面的估计值。通过两个年龄段脚印大小的估计,要让学生理解成长期中脚印面积的大小与年龄的增长有着密切的关系。

估计自己脚印的面积可以回家完成,然后将所描好的脚印图带到学校进行交流。教学时,教师还可以找一幅公园或某个活动场所的平面图,利用方格纸估算这幅平面图形的面积,再组织同学交流。

如果有些班级的学生能力较强,也可以补充一些没有方格背景的不规则图形面积的估计与计算。学生在估计与计算这些图形的面积时,首先要会把这个图形看作近似的基本图,并围一围,随后用尺量一量基本图的相关条件的尺寸,并计算面积。

板书设计:成长的脚印。

小学五年级数学的教案篇十六

北师大版数学第九册教科书第77—78页内容。

1、知识与技能:能正确估计不规则的图形面积的大小,能用数方格的方法计算一些不规则图形的面积,掌握数方格的顺序和方法。

2、过程与方法:能借助方格图估算不规则图形的面积,在估算面积的过程中,体验解决问题策略的多样性,培养初步的估算意识和估算习惯,体验估算的必要性和重要作用。

3、情感态度价值观:体会数学与现实生活的密切联系,感受数学的应用价值。

利用方格图估计不规则图形面积。

估算的习惯和方法的选择。

在现实生活中,学生将接触到大量的不规则图形的面积问题,根据标准的要求,让学生掌握估算不规则图形的面积,是培养学生空间观念的一个方面,同时也是提高学生解决实际问题能力的一个方面。本课时的教学正是为学生顺利掌握解决数学问题的方法而展开的。

树叶若干片,方格纸一张,写有“你知道吗”的小黑板。

一、情境引题,揭示新知。

二、参与探索,经历新知。

1、自己先独立进行估计,然后小组内进行交流。

2、全班交流:

(1)说明估计的结果及过程。

(2)数方格的方法验证估计值。

(3)师:大家都是用数方格的方法估计的,还有没有其他的估算法呢?

引导学生把图形看成了近似的已学图形,根据图形的面积公式,算出面积。

3、出示小华两岁时的脚印,学生估计面积:

三、小结方法,实践新知:

师板书:1、借助方格图数一数所占的格数。

2、把它看成一个近似的规则图形,测量后进行计算。

(2)请同学们算一算自己脚印的面积约是多少?

学生自己先独立取脚印,然后借助附页3的方格图估算脚印面积。

四、新知实践,解决问题:

1、估算第78页的不规则图形的面积:(课件依次出示)。

(1)学生独立进行估计:

(2)交流汇报时让学生说说自己是怎样估计的。

2、估算手掌的面积:

(1)师:每估一估自己手掌的面积:

(2)学生合作估算并在方格纸上验证:(学生在此环节开展好帮差活动)。

(3)展示汇报:(师:我们在认识平方分米时,说手掌的面积大约是1平方分米)。

六、课堂回顾,总结提高:

同学们,今天你们有什么收获?有什么体会?说来听听。

板书设计:

成长的脚印。

不规则图形面积的估算:

1、借助方格图数一数。

2、把它看成一个近似的规则图形,测量后进行计算。

实践活动――估测树叶的面积。

教学内容:北师大版数学第九册教科书第79页内容。

教学过程:

(一)揭示活动内容。

(二)活动过程。

1、选择树叶。

2、估算一片树叶的面积:

(2)学生分小组讨论交流,指名回答:

(3)生汇报:(a)放在格子上数数。(b)可以把外轮廓在网格纸上画出来,再数。

(4)同桌互相交流一下结果,看看谁估算的最准确。

3、体会绿树对环保的重要性:

(1)如果一棵树有10000片树叶,估算这棵树所有树叶的总面积。

注:(出示你知道吗)。

你知道吗?

一个人要生存,每天需要吸进0、8公斤氧气,排出0、9公斤二氧化碳。1万平方米的森林所制造的氧气能供给一千人呼吸。

资料介绍:

10平方米的森林或25平方米的草地就能把一个人一天呼出的二氧化碳全部吸收,并供给所需氧气。就全球来说,森林绿地每年为人类处理近千亿吨二氧化碳,为空气提供60%的净洁氧气。全球现有的森林,每年生产的氧气达555亿公斤。

4、说说本节课的感受。

【本文地址:http://www.pourbars.com/zuowen/15831618.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map