用比例知识解答应用题人教版六年级教案设计(优质17篇)

格式:DOC 上传日期:2023-11-27 22:36:05
用比例知识解答应用题人教版六年级教案设计(优质17篇)
时间:2023-11-27 22:36:05 小编:HT书生

教案的反思和调整是提高教学质量的重要环节,教师应该根据实际情况进行及时的修正和改进。在教案中,教师应该注重培养学生的创新思维和实践能力。"下面是小编为大家整理的教案范文,供大家参考和借鉴。大家可以通过学习优秀的教案范例,提高自己的教案编写水平。"

用比例知识解答应用题人教版六年级教案设计篇一

2.能够使学生利用正反比例的意义正确、熟练的解答应用题.。

3.培养学生的分析能力、综合能力以及判断推理能力.。

教学重点。

使学生能够利用正反比例的意义正确、熟练的解答应用题.。

教学过程。

一、复习准备.。

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.。

(2)总价一定,每件物品的价格和所买的数量.。

(3)小朋友的年龄与身高.。

(4)正方体每一个面的面积和正方体的表面积.。

(5)被减数一定,减数和差.。

谈话引入:我们今天运用正反比例的知识来解决实际问题.。

用比例知识解答应用题人教版六年级教案设计篇二

教学目的。

一、计算练习。

做练习二十三的第5、6、11题。

1、第6题,让学生独立口算,共同核对得数。

2、第6题,让学生独立笔算,填出得数,集体订正。

3、第6题,第一行指名板演,并要求学生说说怎样估算,第二行全班学生在练习本上估算,指名口答得数,共同订正。

二、应用题解题练习。

练习二十三的第7-10题及第12、14、15题。

1、第七题,全班学生独立在练习本上解答,教师巡视,分别指名将两种不同的解法的综合算式抄在黑板上:

7200÷12÷67200÷(12÷6)。

让学生比较两种解法的不同。

2、第8题,先引导学生回顾除法应用题中常见的数量关系,然后再求。

3、第9、10题,先让学生读题,审题,比较两题的不同,第9题是连除应用题,第10题不是连除应用题。

4、第12题,两道小题也要让学生对比着练,先让学生独立解答,然后指名说解法。

5、第14、15题,让学生独立列出综合算式解答,集体订正。

三、应用题补充条件、问题练习。

做练习二十三的'第13、16题。

1、第13题,读题,明确条件,然后给予适当的启发。

3、整理和复习。

复习混合运算式题、文字题和连乘、连除应用题。

教学内容。

课本第116页的第1-3题;练习二十六的第1-4题。

教学目的。

1、通过整理和复习,使学生进一步掌握含有两级运算的三步式题的运算顺序,能比较熟练地进行计算,并会列综合算式解答两步计算的文字题。

2、使学生进一步理解连乘、连除应用题的数量关系,能比较熟练地解答这两种应用题,提高理解能力。

教学过程。

一、复习混合运算。

1、混合运算式题。

(1)做课本第116页第1题及补充题。

(2)做练习二十六的第1题。

学生独立做,教师巡视,发现问题,集体订正。

(3)做练习二十六的第3题。

左图是变化了形式的三步混合运算式题,右图是以框图形式出现的混合运算。让学生独立计算,指名说出亿时结果。

2、两步计算文字题。

做第116页的第2题。

让学生说说每道题求什么,必须知道哪两个数,再引导学生列综合算式。

做练习二十六的第2题。

让学生独立列出综合算式计算,指名答出,共同订正。

二、复习连乘、连除应用题。

1、做课本第116页的第3题。

让学生根据题意画线段图,教师巡视指导。

解答后,引导学生把它改编成用除法计算的两步应用题。

2、练习二十六的第4题。

让学生列综合算式解答,订正时,指名说说两小题的相同点和不同点以及综合算式的每一步求什么。教师归纳,指出解答连乘、连除应用题应注意的问题。

用比例知识解答应用题人教版六年级教案设计篇三

五、课题:

教学目的。

1.通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.。

2.通过复习,培养学生的分析能力以及综合能力.。

3.通过复习,培养学生认真、仔细的学习习惯.。

教学重点。

通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.。

教学难点。

通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答.。

教学过程。

一、复习准备.。

老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?

学生回答:

(1)3是6的几分之几?

(2)6是3的几倍?

(3)3比6少几分之几?

(4)6比3多几分之几?

(5)6占6与3总和的几分之几?

(6)3是6与3差的几倍?……。

谈话导入:今天我们就来复习分数应用题.(板书:分数应用题的复习)。

二、复习探讨.。

(一)教学例4.。

学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?

1.教师提问:根据已知条件,你都可以提出什么问题?并解答.。

2.反馈:

(1)水彩画和蜡笔画共多少幅?

(2)水彩画比笔画少多少幅?

(3)蜡笔画比水彩画多几分之几?

(4)水彩画比蜡笔画少几分之几?

(5)水彩画是蜡笔画的几分之几?

(6)蜡笔画是水彩画的几分之几?

(7)……。

3.教师质疑.。

(1)5问和6问为什么解答方法不同?(单位1不同)。

(2)3问和4问的问题有什么不同?(单位1不同)。

(二)例题变式.。

1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多,蜡笔画有多少幅?

(1)学生独立解答.。

(2)学生讨论两道题的区别.。

(三)深化.。

如果题目中的分数发生了变化,我们还会解答吗?

(1)学生独立解答.。

(2)学生讨论两道题的区别.。

三、巩固反馈.。

1.分析下面每个题的含义,然后列出文字表达式.。

(1)今年的产量比去年的产量增加了百分之几?

(2)实际用电比计划节约了百分之几?

(3)十月份的利润比九月份的利润超过了百分之几?

(4)的电视机价格比降低了百分之几?

(5)现在生产一个零件的时间比原来缩短了百分之几?

(6)十一月份比十二月份超额完成了百分之几?

2.列式不计算.。

(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?

(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?

3.判断并且说明理由.。

男生比女生多20%,女生就比男生少20%.。

四、课堂总结.。

通过今天这堂课,你有什么收获吗?

五、课后作业.。

某体操队有60名男队员,

(1)女队员比男队员多,女队员有多少名?

(2)男队员比女队员多,体操队员共有多少名?

(3)女队员比男队员少,女队员有多少名?

(4)男队员比女队员少,体操队员共有多少名?

六、课题:用比例知识解答应用题。

教学目的。

1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.。

2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.。

3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.。

教学重点。

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。

教学难点。

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。

教学过程。

一、复习准备.。

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.。

(2)总价一定,每件物品的价格和所买的数量.。

(3)小朋友的年龄与身高.。

(4)正方体每一个面的面积和正方体的表面积.。

(5)被减数一定,减数和差.。

谈话引入:我们今天运用正反比例的知识来解决实际问题.。

(板书:用比例知识解应用题)。

二、探讨新知.。

(一)教学例5(用比例解答下题)。

1.学生读题,独立解答.。

2.学生反馈:

3.分析:

(1)为什么需要用正比例解答?

(2)12和要求的天数之间有什么关系?

(二)反馈.。

2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

三、巩固反馈.。

四、课堂总结.。

通过这堂课的学习,你有什么收获?

五、课后作业.。

六、板书设计。

用比例知识解答应用题人教版六年级教案设计篇四

(一)教学例5(用比例解答下题)。

1.学生读题,独立解答.。

2.学生反馈:

3.分析:

(1)为什么需要用正比例解答?

(2)12和要求的天数之间有什么关系?

(二)反馈.。

2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

三、巩固反馈.。

四、课堂总结.。

通过这堂课的学习,你有什么收获?

五、课后作业.。

用比例知识解答应用题人教版六年级教案设计篇五

教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。

2、使学生能利用正反比例的意义正确解答应用题。

培养学生的判断分析推理能力。

教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

(一)复习。

1.说说正、反比例的意义。

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从a地到b地,行驶的速度和时间。

(3)每块砖的面积一定,砖的块数和总面积。

(4)海水的出盐率一定,晒出的盐和海水重量。

3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

(二)新课。

(1)用以前方法解答。

(2)研究用比例的方法解答。

题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

能不能利用这个关系式列比例解答?

解比例,同学自已完成,及时纠正。检验。

改变例1中的条件和问题。

1、以前的发法解答。

2、怎样用比例知识解答?

3讨论结果填书上。

4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

用比例知识解答应用题人教版六年级教案设计篇六

2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.。

3.通过复习,培养学生的`分析能力、综合能力以及判断推理能力.。

教学重点。

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。

教学难点。

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。

教学过程。

一、复习准备.。

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.。

(2)总价一定,每件物品的价格和所买的数量.。

(3)小朋友的年龄与身高.。

(4)正方体每一个面的面积和正方体的表面积.。

(5)被减数一定,减数和差.。

谈话引入:我们今天运用正反比例的知识来解决实际问题.。

用比例知识解答应用题人教版六年级教案设计篇七

教学目标:

使学生进一步理解和掌握用比例知识解答应用题的方法。

抓住解题关键进行熟练准确的判断,从而找准题中的等量关系。

通过与算术方法解答相比较,加强知识之间的联系,使学生进一步理解能用比例知识解答应用题的数量关系。

教学过程:

师:谁能够说说用比例知识解应用题的关键是什么?

判断下题中各量成什么比例?并说明理由?

指导学习题例。

让学生独立解答例7。

在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。

相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。

不同点:第一种解法是直接设所求问题为x。

第二种解法是间接设,即解出x后,还要用x减3才是所求问题。

师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。

学习例6。

师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的关键。

对比小结。

比较例5例6有什么不同?分别是根据什么关系来解答的?

(强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用x代替,列出方程解答)。

算术解法和比例解法的比较和联系。

观察算式(例5)。

练习巩固。

笔答题:教材117页1~3题。

全课总结(略)。

用比例知识解答应用题人教版六年级教案设计篇八

教学内容:

第十一册p5859,例2、例3,练习十三15。

教学要求:

1、使学生认识按比例分配应用题的结构特点和解题思路,能正确解答按比例分配应用题。

2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。

教材简析:按比例分配应用题是把一个数量按照一定的比进行分配。它是平均分问题的发展。本课的教学重点是根据两个量的比推想出各占总数量的几分之几。

教学过程:

一、创设情境,提出问题:

同桌讨论,再回答。

(估计学生回答:1、平均分,就是男生12个,女生12个;2、这样不合理。3、应该按人数来分,男女生人数的比是30:18,化简后是5:3,按这个比例来分较合理。)。

师小结:这样24个实心球按5:3来分,男女生各能分到几个?你能解决这样问题吗?

二、主动探究,归纳方法:

老师把刚才的问题板书成应用题出示,并引导学生一起研究解决刚才的问题:

方法引导:同学们想出了很多方法来解决这个问题,这些方法都可以,具体解题时用什么方法,同学们可以灵活地选择。

小结:我们分东西,可以用平均分,也可以按一定的比例来分。像刚才一样,把一个数量按照一定的`比例进行分配,这种分配的方法叫做按比例分配。(出示课题:按比例分配的应用题)。

三、运用知识解决问题:

(1)初步运用。

师:这样的问题你能解决吗?

(2)出出金点子:

学生先自己做,再交流。

四、总结:

今天,我们学会了哪些知识?并说说我们是怎样学会这些知识的?

五、课堂练习:练习十三14。

用比例知识解答应用题人教版六年级教案设计篇九

一﹑扎实抓好应用题基础训练的教学,提高学生解答应用题的能力。

应用题基础训练是学习应用题的基础,只有认真扎实抓好应用题的基础训练的教学,才能培养学生良好的解答应用题的能力。王老师的这节课就非常注重这方面的教学,从复习题的“求一个数的几分之几的数是多少”的训练,再到例2让学生动手画线段图,说数量关系式,列式解答,再到巩固练习时第一题找标准题,比较量,并说出求比较题的数量关系式,第二题的看图列式题,都是应用题的基础训练,教师整一节课都在围绕着应用题的基础训练进行。从这节课的教学效果可以看到,只有像王老师那样,扎实抓好应用题基础训练的教学,才能提高学生解答应用题的能力。

二、强化学生对应用题说的能力的训练,促其内化,收到良好的效果。

多种形式训练学生说解题思路,使学生充分内化为自己的思想,达到以说促学的良好效果。从这节课学生说解题思路说得非常好,我们也可以看出王老师平时的课堂教学非常注重学生口头表达能力的培养。如果王老师能把数量关系用文字的形式写出来就最好了。

用比例知识解答应用题人教版六年级教案设计篇十

最近两节课教了正、反比例的有关知识,学生的学习效果不太令人满意,总感觉有这样那样的不足,比如:学生对概念的理解还不是那么深刻;对正、反比例的判断方法掌握得还不够到位等等。其实我深知本课学习内容比较抽象,怎样让这些抽象的概念知识形象化,教学中我注重了强化学生的体验感知,我从多个学生耳熟能详的生活实例入手,让学生充分感悟所学的数学概念。随后还进行了大量的`层次不同的练习。

教学效果与以往相比是有了明显的提高,但总感觉还是那么不太令人满意。练习中学生对两种正反比例的量判断还不是那么熟练,特别是像有时两种相关联的量并不成比例,如人的身高和年龄;圆的面积和半径等等。学生判断时就会犯经验主义的错误,正比例、反比例张冠李戴。反映出学生对概念的掌握还不是那么清晰。

所以我感觉对于这样比较抽象的概念课,今后的教学中我们应该如何突破?如何进一步提高课堂效益,消除学生的认识误区,值得我们好好深思。

用比例知识解答应用题人教版六年级教案设计篇十一

班级姓名小组小组评价。

学习目标:

1、理解比的意义,掌握比的各部分名称。理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。

2、通过独立思考、小组合作、展示质疑,培养迁移、体会数学知识之间的普遍联系。

3、激情投入,阳光展示,全力以赴,做最好的自己。

重点:分数、除法、比三者之间的联系和区别。

难点:理解求比值和比的未知项的方法。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够理解比的意义,掌握比的各部分名称。理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。

一、自主学习:

1、自学课本p43-p44页。

2、填空。

1)、比的书写符号是()叫做()。

2)、10比15写作()或()。

3)、35:21读作()。

4)、比的各部分名称。

5)、在两个数的比中,()叫做比的前项。()叫做比的后项。

6)、()叫做比值。

二、合作探究:

例1、求下面各比的比值。

10:5:40.3:0.5。

小结:1)、求两个数比的比值的方法就是:

2)、比值可以用()、()或()表示。

例2、讨论比和比值的区别和联系。

例3、讨论比和分数、除法之间有什么联系和区别呢?

例4、求比中未知项的方法。

():8=215:()=。

要点提示;已知比的前项、后项和比值中的任意两项,都可以根据它们之间的关系来求出第三项。

三、学以致用:新课标第一网。

1、读一读,写一写。

5:3读作:10:11读作:

35比36写作:55比39写作:

2、想一想,填一填。

1)、7比4记作(),7是比的(),4是比的(),写成分数形式是()。

2)、比和分数相比,()相当于分数的分子,()相当于分数的分母,()相当于分数值。

3)、0.3==():()。

4)、甲是乙的5倍,甲和乙的比值是(),乙和甲的比值是()。

5)、爸爸今年36岁,小红7岁,今年爸爸与小红年龄的比是():(),比值是();今年小红与爸爸年龄的比是():()比值是()。

6)、汽车每小时行驶60千米,猎豹的速度是每小时96千米,猎豹与汽车速。

度的比是():(),比值是()。

7)、修一条公路,甲队18天修了1620米,乙队10天修了1000米,甲队与乙队所修路程的比是():(),比值是();所用时间比是():(),比值是()。

8)、360千克与0.84吨的比值是();40分钟与时的比值是()。

3、判断题。

1)、比的前项不能为0。()2)、a:b的比值3:1。不是()。

3)、3km:4km=km()。

4)、甲数:乙数=5:2,则甲数是乙数的2.5倍。()。

5)、小明和哥哥去年的年龄比是5:8,今年年龄比不变。()。

4、求比值。

0.8:1.660米:70米。

1.5吨:1.2吨9:8:

四、解决问题:

1、求比的未知项。

4:()=0.5():12:()=。

用比例知识解答应用题人教版六年级教案设计篇十二

吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。

单元(章)主题百分数任课教师与班级。

本课(节)课题利息第9课时/共9课时。

教学目标(含重点、难点)。

及设置依据1.通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。

2.对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。

重点:掌握利息的计算方法。

难点:正确地计算利息,解决利息计算的实际问题。

教学准备多媒体课件。

教学过程。

内容与环节预设个人二度备课课后反思。

一、导入。

随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。

内容与环节预设个人二度备课课后反思。

二、新课。

1.介绍存款的种类、形式。

存款分为活期、整存整取和零存整取等方式。

2.阅读p99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。

本金:存入银行的钱叫做本金.小丽存入的100元就是本金。

利息:取款时银行多支付的钱叫做利息。

税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的1.8元是税后利息。国债的利息不纳税。

利率:利息和本金的比值叫做利率。

(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。

(2)阅读p99页表格,了解同一时期各银行的利率是一定的。

4.利息的计算。

(1)出示利息的计算公式:利息=本金×利率×时间。

(2)计算方法:

按照书上的利率,如果李奶奶的1000元钱存整取两年,到期的利息是多少?学生计算后交流。

内容与环节预设个人二度备课课后反思。

(3)两年后取款,李奶奶能得到93.6元利息吗?为什么?

(4)学生计算后回答,教师板书:。

1000×4.68%×2=93.6(元)1000×4.68%×2=93.6(元)。

93.6-93.6×5%=88.92(元)93.6×(1-5%)=88.92(元)。

比较两种方法?

加上她存入本金1000元,到期时她可以实际取回多少元?

5.练习。

1、完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。

2、完成100页做一做。

3、完成练习二十三的第9题。

三、小结:这节课你懂得了什么?

板书。

设计利息。

利息=本金×利率×时间。

1000×4.68%×2=93.6(元)1000×4.68%×2=93.6(元)。

93.6-93.6×5%=88.92(元)93.6×(1-5%)=88.92(元)。

个人二度备课:课后反思:

作业布置或设计自学103页什么是成数?说说自己对成数的了解。课后反思:

教后整体反思。

用比例知识解答应用题人教版六年级教案设计篇十三

(至上学期)。

六年级数学学科教师:高春枝。

学习。

内容分数乘法一步应用题。

学习。

标1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。

重难。

点及。

突破。

措施教学重点:理解题中的单位“1”和问题的关系。

教学难点:抓住知识关键,正确、灵活判断单位“1”。

课前。

准备。

导学案设计个性化设计。

案1、先说下列各算式表示的意义,再口算出得数。

12××。

2、列式计算。

(1)20的是多少?(2)6的是多少?

3、由以上练习,你能得出什么结论?

流1、小组合作学习例1。

(1)抓住关键句“我国人均耕地面积仅占世界人均耕地面积的”,结合线段图理解题意,找到解题思路。

(2)在小组内讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)。

(3)在分析题意的基础上,独立列式、计算。

2500×=1000(平方米)。

2、结合计算结果,说说自己的想法,培养学生分析数据的能力,进行国情教育。

3、(1)巩固练习:“做一做”,独立画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。

(2)练习四第2题:先找出单位“1”--全世界的丹顶鹤数只。

(3)练习四第3题:先找到单位“1”,再独立列式解答。

4、讨论小结:解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?

展作业:练习四第4、7、8、9题。

审核人:

用比例知识解答应用题人教版六年级教案设计篇十四

导学目标:

2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。

3、使学生初步感知事物间是相互联系、变化发展的。

导学重点:比例的意义和基本性质。

导学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。

预习学案。

1、什么是比?

2、口算下面各比的值,哪些比的比值相等?

12:1634:185:310:66:10。

导学案。

探究比例的意义。

例1一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下。

时间(时)25。

路程(千米)80200。

80:2=200:55:3=10:66:10=9:15802=。

像这样由两个相等的比组成的式子我们把它叫做比例。

练习:

应用比例的意义判断下面的比例是否正确。

1、20:5=1:42、12:133、0.6:0.2=34:14。

先独立完成,再在小组内交流。

我们已经知道组成一个比的两个数分别叫做这个比的前项和后项,组成比例的四个数也叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

看课本48页,在图上这四面国旗的尺寸中,能找出哪些比来组面比例?

四人小组讨论,老师巡视,给予指导。

请小组汇报讨论结果,老师根据学生的汇报,将组成的比例分类板书在黑板上。

老师结合板书归纳:根据同学们找的结果,我们看到,这四面国旗的长与宽的比值都相等,所以每两面国旗的长与宽的比都可以组成比例。同样,这四面国旗的宽与长的比值也都相等,所以每两面国旗的宽与长的比也都可以组成比例。另外我们还发现每两面国旗的长与长的比值与宽与宽的值也相等,所以每两面国旗的长与长的比,与宽与宽的比也可以组成比例。根据两个相等的比可以组成比例,从四面国旗的尺寸中,我们可以组成许多个比例。

二、比例的基本性质。

板书:

80:2=200:55:3=10:66:10=9:15。

内项。

外项。

观察黑板上的比例式,你以发现比例的内项与外项之间有什么关系吗?小组讨论。教师在学生讨论的基础上总结并在比例式下板书如下,并说明:通过计算,我们发现两个外项的乘积等于两个内项的乘积。

802=200580×5=2×200。

53=1065×6=3×10。

610=9156×15=10×9。

小组合作,举几个这样的例子验证一下。

从上面的计算我们发现,在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

观察黑板上分数形式表示的比例式,内项乘内项怎样乘?外项乘外项怎样乘?得到分子与分母交叉相乘。

练习。

1、6:3=8:52、0.2:2.5=4:50。

3、2:3=12:134、1.2:0.6=10:5。

课堂检测新课标第一网。

1、应用比例的意义判断下面的比例是否正确:

(1)3:5=9:15。

(2)2.5:5=25:0.5。

(3)1002=。

(4)13:2=16:4。

(1)6:9=9:12。

(2)1.4:2=7:10。

(3)5:2=58:14。

(4)34:110=7.5:1。

3.选择题(把正确答案的序号填入括号内)。

(1)()与3:5能组成比例。a.10:6b.13:15c.30:50。

(2)()与5:8能组成比例。a.15:18b.10:16c.3:5。

(3)4:5与()能组成比例。a.14:15b.8:10c.15:12。

(4)7:9与()能组成比例。a.70:90b.17:19c.3:4。

你能比较一下“比”与“比例”有什么联系与区别吗?

板书设计。

一、比例的意义二、比例的基本性质。

表示两个比相等的式子叫做比例。两个外项的积等于两个内项的积。

用比例知识解答应用题人教版六年级教案设计篇十五

3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。

教学重点。

理解正反比例的意义,掌握正反比例的变化的规律.。

教学难点。

理解正反比例的意义,掌握正反比例的变化的规律.。

教学过程。

一、导入新课。

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问。

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量。

(三)教师谈话。

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学。

(一)成正比例的量。

例1.一列火车行驶的时间和所行的路程如下表:

时间(时)12345678……。

路程(千米)90180270360450540630720……。

1.写出路程和时间的比并计算比值.。

(1)。

(2)2表示什么?180呢?比值呢?

(3)这个比值表示什么意义?

(4)360比5可以吗?为什么?

……。

2.思考。

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度。

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。

3.小结:有什么规律?

教师板书:商不变。

(二)成反比例的量。

1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。

工效(个)102030405060……。

时间(时)603020151210……。

2.教师提问。

(1)计算工效和时间的乘积.。

(2)这一组题中涉及了几种量?谁与谁是相关联的量?

(3)请你举例说明谁与谁是相对应的两个数?

(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。

3.小结:有什么规律?(板书:积不变)。

(三)不成比例的量。

1.出示表格。

运走的吨数10203040。

剩下的吨数90807060。

总吨数(和不变)100100100100。

2.教师提问。

(1)总吨数是怎样得到的?

(2)谁与谁是两种相关联的量?

(3)它们又是怎样变化的?变化的规律是什么?

运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。

(四)结合三组题观察、讨论、总结变化规律.。

讨论题:

1.这三组题每组题中谁与谁是两种相关联的量?

2.在变化过程中,它们的异同点是什么?

共同点:都有两种相关联的量,一种量变化,另一量也随着变化。

不同点:第一组商不变,第二组积不变,第三组和不变.。

总结:

3.分别概括正、反比例的意义。

4.强调第三组题中两种相关联的量叫做不成比例。

5.教师提问。

(1)两种量成正比例必须具备什么条件?

(2)两种量成反比例必须具备什么条件?

(五)字母关系式。

三、巩固练习。

判断下面各题是否成比例?成什么比例?

用比例知识解答应用题人教版六年级教案设计篇十六

第一课时两位数乘两位数(不进位)。

教学内容:教科书第63页例1及做一做,练习十五。

教学目标:让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数不进位的乘法。在学习活动中感受数学与生活的密切联系。

重点难点:掌握笔算方法并正确计算;解决乘的顺序和第二部分积的书写位置问题。

教具准备:例2主题图。

教学过程:

一、复习。

1、口算。

52×1043×30=12×40=31×20=17×20=21×30=。

2、笔算并说出计算过程。

41×7=。

二、新课。

1、教学例2。

出示例2的主题图,让学生说一说,这幅图所展示的情境是什么。(小红的妈妈带着小红去书店买书,小红要买一套12本,每本24元的书,她在想一共要付多少钱。)。

老师组织学生进行讨论,然后展示不同的计算过程和结果。

例:24×12=24024×10=24024×2=28240×28=288。

有些学生会想到把12看成10和2的和,先用24×10,再用24×2,然后把两次乘得的结果相加。

有些学生会想到用笔算乘法。先让学生说他是如何写的,老师家以指导。

老师在指导分析过程中把每步板书,强调每步难点。

例1:24×12=288(24×10=24024×2=48240+48=288)。

24。

×12。

4824×2的积。

2424×10的积。

288(个位的0可不写)。

在总结过程中提问:

(1)两位数乘两位数一种是口算方法,一种是笔算方法,你认为哪种方法好?

(2)笔算中乘了几层,为什么?乘得的结果怎么样?(乘了两层,因为第二因数是两位数,2和24乘完后,1和24还要乘,把两层乘得的结果相加。)。

(3)十位上的1和24乘完后“4”为什么和十位对齐?(因为十位上的1和4相乘乘得的结果是4个十,所以要和十位对齐,个位的0可以省略不写。)。

教师总结完后出示课题,说明我们今天主要学习的是笔算两位数乘两位数的乘法,而且是不需要进位的。

2、指导学习完成“做一做”。

(1)让学生先做前4题,板演,并说出计算过程。

(2)后4题学生做完后,集体订正。

三、小结。

同学们,今天学习的是什么内容,应该注意什么?(今天我们学习的是两位数乘两位数不进位笔算乘法,应注意的是用十位上的数去乘时,乘得的末位数要和十位上的数对齐,也就是和个位乘得的积错开一位。)。

第二课时两位数笔算乘法(进位)。

教学内容:教科书第65页例2、做一做,练习十六第1、2题。

教学目标:让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。

教具准备:多媒体课件(有下围棋的录像或画面);

多个南瓜形算式卡片(每张上一个算式)。

教学过程:

一、提出问题。

呈现下围棋的录像或画面,介绍有关围棋赛的事例(或战绩)。

放大棋盘,让学生观察棋盘结构。使学生了解到:围棋的棋盘面由纵横19道线交叉组成。

接着,把棋子放在纵横线的交叉点上,引出问题:“棋盘上一共有多少个交叉点?”

请学生说一说用什么方法解决这个问题,从而列出算式19×19。

二、探讨计算方法。

1.各组讨论:怎样计算19×19。

请把想出的计算方法写在纸上。

2.组织交流。

各组展示本组的算法。不容易说清楚的,就写在黑板上。

3.师生评议。

(1)请学生说一说,喜欢哪种方法?为什么?

(2)教师对学生发表的意见作以肯定或补充。使学生了解每一种算法的特点和适用范围。例如:估算的方法能很快算出大约有400个交叉点,但它不能满足解决问题的要求。

(3)重点评议笔算。

用检查竖式每一步计算的方式,再现笔算过程。在此基础上,夸赞学生:能用刚学过的两位数乘两位数的知识解决今天的新问题。并且,能正确解决乘的过程中的进位问题。你们真棒!

三、练习。

1.尝试练习。

用竖式计算第65页“做一做”中的4道题。可以让几个组的学生做前2道,另几个组的学生做后2道题。

完成计算后,组织交流。说出笔算的过程,加深学生对笔算过程的了解。

2.完成练习十六第1题。

独立计算,集体订正。根据班上出现错题的情况,和学生一起讨论错误的原因,请学生订正错题。请学生注意:计算时要认真仔细。

3.解决问题。

请学生独立完成练习十六第3、4题。

完成后,请学生向全班说一说,解决问题的过程和结果。

4.游戏。

贴出写有算式的南瓜卡片。用语言描述菜园里收南瓜的情境,请同学们帮助菜农收南瓜。

让学生自由选择卡片,算对的就收获了这个南瓜。

完成后,先检查是不是算对了,再比一比哪组学生收获的南瓜多。奖励优胜组。

四、总结。

1.请学生讨论笔算乘法时要注意什么问题,并交流。

2.教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。

用比例知识解答应用题人教版六年级教案设计篇十七

教学要求:

2、使学生能正确理解正、反比例的意义,能正确进行判断。

3、培养学生的思维能力。

教学过程:

知识整理。

1回顾本单元的学习内容,形成支识网络。

2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

复习概念。

什么叫比?比例?比和比例有什么区别?

什么叫解比例?怎样解比例,根据什么?

什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

什么叫比例尺?关系式是什么?

基础练习。

1填空。

六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。

小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。

甲乙两数的比是5:3。乙数是60,甲数是()。

2、解比例。

5/x=10/340/24=5/x。

3、完成26页2、3题。

综合练习。

1、a×1/6=b×1/5a:b=():()。

2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

3用5、2、15、6四个数组成两个比例():()、():()。

实践与应用。

1、如果a=c/b那当()一定时,()和()成正比例。当()一定时,()和()成反比例。

板书设计:整理和复习。

比例的意义。

比例比例的性质。

解比例。

正反比例正方比例的意义。

正反比例的判断方法。

比例应用题正比例应用题。

反比例应用体题。

【本文地址:http://www.pourbars.com/zuowen/15809876.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map