正方体教学设计(优质18篇)

格式:DOC 上传日期:2023-11-27 17:24:11
正方体教学设计(优质18篇)
时间:2023-11-27 17:24:11 小编:FS文字使者

读书笔记是读者在阅读一本书后,通过记录自己的思考、感悟和体会,总结书中内容的产物。写一篇完美的总结需要有充分的思考和准备。总结是一种对经验和教训的归纳和总结,以下是一些总结范文,供您参考和学习。

正方体教学设计篇一

知识与技能目标:

2.能说出长方体、正方体体积计算公式,并会用字母表示;

3.会正确计算长方体、正方体的体积,并联系简单的生活应用。

过程与方法目标:

1.通过拼搭,培养动手和动脑能力;

2.通过公式的推导,培养迁移、类推能力和抽象概括能力。

情感态度与价值观目标:

在个人及小组的探究活动中,培养团队协作,勇于探索的品质。

学生通过摆放、观察、比较、分析,明确“长方体的体积所含体积单位数正好是长、宽、高的乘积”。

1.多媒体课件。

2.学具:每人一些单位1立方厘米的小正方体。

今天,我们有幸来到这里共同学习一节数学课,我感到非常高兴。与其说是共同学习,也许不如说我们共同分享。其实,我是一个愿意和大家共同分享的人,因为“分享倍增快乐,合作迈向成功”(图片)同学是否愿意一起分享你们的聪明与智慧呢?(出示故事,学生阅读)。

问题:你认为她是一个怎样的小姑娘?

师:对!聪明与勇敢是她最高贵的品质,值得我们尊敬与学习。

那么,你想不想成为这样的人呢?老师有几条秘诀给大家共同分享。(出示图片)你们能做得到吗?愿意展现自己的聪明与勇敢与大家共同分享吗?看,聪明的学生就是这么任性,愿意倍增快乐,迈向成功。好!回答老师一个问。

(问题2)为什么三个一齐就拉不上来呢?(引导学生说明三个一齐占的空间大或地方大)。

师:同学们,这就是聪明,这就是勇敢,我们分享了快乐,我们也会取得成功。这位同学的回答,使我们这一节数学课从一个精彩迈向另一个精彩,因为他说出了我们数学生活学习中常用的也是非常重要的一个概念体积,什么是体积,体积就是物体所占空间的大小。(板书)这一节我们就来研究(板书:长方体与正方体的体积)。(上课)。

师:看到这个题目,你想知道什么呢?(教师引导学生明白)。

生:长方体的体积与哪些条件有关,长方体的体积如何计算。

教师板书学习目标:

1、长方体的体积与长方体的哪些因素有关?

师:下面就让我们共同分享我们的聪明与智慧吧。

探究活动一。

目标:长方体的体积与长方体的哪些因素有关。

材料:三本五年级数学书。

要求:

1、用三本相同的书通过摆、拼来说明此题。

2、小组合作,有讲解,有观察,有记录。

3、将你们的成果写成结论,推荐学生讲解汇报。

(教师巡视,对学生提出的疑问进行指导,引发学生对长方体问题的思考)。

学生汇报:长方体的体积与长方体的长宽高有关。因为宽和高不变,长增加,体积增加。同样,体积也增加。

师:我们找到了体积变化的相关条件,那么怎样计算长方体的体积呢?

探究活动二。

材料:长宽高1厘米的小正方体若干。

要求:

1、组内学员要有分工合作精神,有观察,有记录。

2、请你用1立方厘米的小正方体拼成几种不同的长方体。

3、拼一种长方体,指出相对应的长宽高,并填写到表格中。

4、分析表格中的数据,并得出有关体积的结论。(学生活动,教师巡视指导学生完成对体积的探究)。

学生汇报:要注重引导学生说出推导体积公式的过程,如:长方体的体积与长方体的长宽高相关,也就是说长宽高的某种运算就能得到体积,相乘得到长方体的积。又试用其他几个,也同样得到相同的结论。所以我认为:长方体的体积等于长宽高相乘。

教师引导学生说完整,说明理由。并板书,学生齐读。

师:我们在学习数学的过程中,往往要求我们将数学生活化,将生活数学化,学习数学就是为了解决数学问题,请看:

探究活动三:

目标:解决生活中的数学问题。

要求:

1、认真审题,理解题目中的数字和问题。

2、有疑问,可以在组内进行交流探讨。

3、要写出计算公式,工整认真,格式要正确。学生汇报,展示自己的作业成果。

师:每一组的同学都完成的很好,在组内进行了分享了自己对长方体体积的学习成果,帮助了别人,快乐了自己。但是在我们的生活中,有一类特殊的长方体,那么,它特殊在哪儿呢?看!

探究活动四:

目标:正方体体积的计算。

要求:

1、认识正方体是长宽高都相等的特殊长方体。

2、组内学生讨论,能自己推导出正方体的体积公式。

3、能利用所学正方体知识解决数学问题。

看同学们学得多好啊!可我国伟大的教育家孔子说过:学而时习之,意思是,我们学习了新的知识,就要及时有效地进行复习和应用,这样才能掌握地更好。

3、作业:强化训练。

4、思考:组合图形的计算。

快乐的时间就是那么的短暂,同学们这一节,我们不仅学会长方体和正方体的计算,而且学会了观察、思考、合作,更重要的是学会了分享,学会了合作。让我们重新审视我们先前说过的一句话:分享倍增快乐,合作迈向成功。

谢谢大家!

正方体教学设计篇二

教学目标:

1、结合具体的长方体和正方体的展开与折叠的情景,经历探究长方体和正方体6个面相对位置的过程,能够准确的掌握长方体和正方体的6个表面的展开与折叠。

2、能够认识长方体和正方体,具有初步的立体空间想象能力。

3、使学生感受到长方体和正方体与生活的密切联系,培养学习数学的良好兴趣。

教学重点、难点:

能够准确的掌握长方体和正方体的6个表面的展开与折叠。

教学方法:

师生共同归纳和推理。

教学准备:

教学过程:

一、复习导入:

教师让学生拿出正方体的盒子并沿着棱剪开,把正方体展开成6个面和把6个面折叠成正方体。复习上节课学习的有关内容。

二、课堂练习:

1、学生做课本17页第1题。

2、学生做课本17页第2题。

让学生把长方体盒子的6个面展开标上数字,然后找出每个数字所对应的面上是多少?

三、课堂小结:

同学们,这一节课你学到了哪些知识?(提问学生回答)。

板书设计:

展开与折叠每个面相对的面上的数字是多少。

正方体教学设计篇三

教材第20页的内容及教材第21~22页练习五的第4、5、8、9题。

1.通过观察、操作等活动,认识正方体、掌握正方体的特征。

2.通过观察比较弄清长方体与正方体的联系与区别。

3.通过学习活动培养学生的操作能力,发展学生的创新意识和空间概念。

理清长方体和正方体的关系。

一、

1.回忆长方体的特征,请学生用语言进行描述。

教师:今天这节课,我们继续学习一种特殊的立体图形。

(板书课题:正方体)。

二、

1.想一想。正方体具有什么特征呢?我们在研究时应该从哪方面去思考?(也应该从面、棱、顶点这三个方面去考虑)。

2.合作学习。

学生根据手中的正方体学具,小组合作探究。

3.集体交流。

1组:正方体有6个面,6个面大小都相等,6个面都是正方形。

2组:正方体有12条棱,正方体的12条棱的长度相等。

3组:正方体有8个顶点。请学生到讲台前,手指正方体模型,按“面、棱、顶点”的特征有序地数一数,摸一摸,其他同学观察思考。

教师问:怎样判断一个图形是不是正方体?

4.教学正方体和长方体的联系与区别:

老师出示一个正方体教具。请学生讨论:它是不是一个长方体?

学生充分讨论,集体交换意见。

学生甲组:这个物体的六个面都是正方形,它不是长方体。

学生乙组:长方体6个面是相对的面完全相同,而这个物体是6个面都完全相同,所以我们也认为它不是长方体。

学生丙组:我们组有不同意见,因为我们认为它的6个面虽然都是正方形,不是长方形,但是正方形是特殊的长方形,它的12条棱也包括每组4条棱长度相等;6个面面积相等,也包括了相对的面面积相等这些条件,所以我们认为它是长方体。

教师根据学生的发言进行总结:正方体是特殊的长方体,长方体中包含着正方体,用集合圈表示为:

教师:我们把长、宽、高都相等的长方体叫做正方体或者叫立方体。

1.教材第20页的“做一做”。

2.教材第21~22练习五的第4、5、8、9题。

今天这节课,大家有什么收获?(学生畅所欲言谈收获,教师将学生的发言进行总结)。

有6个面,都是正方形,每个面都完全相同。

有12条棱,每条棱长度相等。有8个顶点。

1.在复习长方体的特征后,让学生学会把学习长方体的特征的方法迁移到学习正方体的特征上来,使学生又快又好地掌握了正方体的特征。

2.把猜想和探索实践紧密结合,既可以激发学生的探索精神,又让他们享受猜想的成功体验,更好地发挥他们的创造力,同时“长方体和正方体的联系与区别”的问题也就迎刃而解了,只是学生需对体验中获得的有关知识进行搜索、归纳、整理而已。

正方体教学设计篇四

3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力。

学生准备小正方体(多个)ppt。

1、填空。

(1)()叫做物体的体积。

(2)常用的体积单位有()()()。

2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。学生回答后,教师总结:物体体积的大小取决于这个物体里所含单位体积的多少。

1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)。

2、出示学习目标:

1、回顾“以旧学新”的几何问题研究方法。

以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。看看这两种方法,哪种适合研究长方体体积。简单讨论后,确定用“数方块”的方法。

2、教师ppt演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的长、宽、高必须是整厘米的。

3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。

4、出示小组研究提示。

(1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)。

(2)把不同的长方体的相关数据填入下表(29页表格)。

(3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?

6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。

7、根据例1右边的正方体图形,让学生总结出正方体体积的计算方法正方体体积=棱长×棱长×棱长用字母表示:v=a×a×a=a3a3读作“a的立方”,表示3个a相乘。

1、建筑工地要挖一个长50米、宽30米、深50厘米的长方体土坑,一个要挖出多少方的土?(33页第8题)。

2、一块棱长30厘米的正方体冰块,它的体积是多少立方厘米?(33页第9题)。

3、一块长方体肥皂的尺寸如下图,它的体积是多少?要用硬纸板给它做个包装盒,至少需要多少平方厘米的纸板?(31页做一做第一题增加一个问题)。

这节课你有什么收获?

v=abh正方体体积=棱长×棱长×棱长。

v=a×a×a=a3。

正方体教学设计篇五

难点。

1:根据正方体表面积的计算灵活地解决生活当中的一些实际问题。

过程。

提问:制作这个墨水盒至少需要多少平方厘米的硬纸板是求什么?

解题思路:直接利用正方体面积计算公式进行计算。

提问:例2与例1的区别是什么?(相同点:都是求表面积。不同的:例1中的六个面都是完整的。例2中的上面的面挖去了3.2dm2)。

小组讨论解题思路:从正方体的表面积当中减去挖去的面积。

演示把两个棱长是10厘米的正方体拼在一起的过程。

提问:表面积增加了还减少了?

少了几个面?

解题思路:1、算出两个正方体的表面积减去减少的两个面的面积。

2、直接算出10个面的面积。

课堂。

练习。

出示三道例题,学生进行练习。

小结。

在解决生活当中的实际问题时,要灵活应用正方体表面积的计算知识和方法。

正方体教学设计篇六

2、知道长方体、正方体各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。

3、积极主动参与数学活动,在总结和归纳长方体、正方体特征及关系的过程中,获得积极的学习体验。

掌握长方体和正方体的面、棱、顶点的特征,认识其长、宽、高及长方体和正方体之间的关系。

每个学生准备一个长方体、一个正方体实物,教师准备长方体、正方体模型,长方体、正方体特征表格,课件。

(一)、创设情境。

师:同学们,老师手中拿的这个盒子,谁知道它是什么形状的?(长方体)那么这个盒子的形状谁知道呢?(正方体)。

师:真不错,老师还为大家准备了一张图片,你能从中找出长方体或正方体的物体吗?(出示图片,指生回答)。

师;同学们说得很好,在我们的生活中,你还见过哪些物体的形状是长方体或正方体?

生自由回答:大部分药盒是长方体,香皂包装盒是长方体,骰子是正方体,粉笔盒是正方体、讲台是长方体。

师;看来同学们都是生活中的.有心人,我们已经认识了长方体和正方体,这节课我们就来共同研究长方体和正方体有什么特征。(板书课题:长方体和正方体的特征)。

(二)、认识特征。

1、师出示长方体模型。

师:(师拿模型)关于长方体,你还知道些什么?

生:我知道长方体有平平的面。(师在黑板上课前画好长方体和正方体)(板书:面)。

师:再看一看两个面相交处有什么?

生:有一条边。

师:我们把两个面相交的这条边叫做棱。(板书:棱)。

师:请同学们看一看三条棱相交处有什么?

生:尖。(或点)。

师:三条棱相交的点叫做顶点。(板书:顶点)。

师:请同学们拿起自己准备的长方体,摸一摸它的面、棱、顶点。

学生按要求摸一摸。

生:长方体有6个面。

师:你们同意吗?谁来说一说你是怎样数的?

生1:我是转圈数,再数左、右两边的两个面,共6个面。

(边说边演示)。

生2:我是按上面、下面、前面、后面、左面、右面的顺序数的,共6个面。

(边说边演示)。

生可能回答:

生1:这6个面都是长方形。

生2:上、下两个面大小相等。

生3:左、右两个面大小相等。

生4:前、后两个面大小相等。

生5:老师,我和某某有不同的意见,我手中的长方体不是6个面都是长方形的,有2个面是正方形的(师拿着展示)。

学生同桌合作交流并集体汇报:

生1:我们是用尺子测量的,通过测量我们发现相对的面的长、宽、都相等,所以面积就相等。

生2:我们先在纸上描出底面的长方形,再把上面的长方形放在上面,发现两个长方形一样大。

师:同学们真善于动脑筋,用不同的方法验证了长方体相对的面是否相等。

下面我们来看一下大屏幕,(师用课件演示)。

通过我们的共同验证,得出结论:长方体有6个面,相对的面完全相等。(课件出示)。

师:(师拿物体说)这是一种比较特殊的长方体,它有两个面是正方形的,那么其他的四个长方形的面积就完全相等。也就是说一个长方体最少要有4个面是长方形的。

3、师:我们再来看这个长方体,它是用细棒和珠子做成的,数一数几颗珠子?

生:8颗珠子。

师:这些珠子就是长方体的(顶点)。

师:那么长方体有几个顶点?

生:长方体有8个顶点。

师:(课件)长方体三条棱相交于一个顶点,一共有8个顶点。

师:再数一数这个长方体用了几根小棒?

生:用了12根小棒。

师:这些小棒就是长方体的(棱)。

师:谁来说一下长方体有几条棱?

生:长方体有12条棱。

师:长方体的棱有什么特点?

生1:这12条棱可以分成3组,相对的棱长度相等。

生2:这12条棱可以分成3组,每组4条棱长度相等。

师指名一生到前面演示。

(师用课件演示说明)。

师:(结合课件),请同学们仔细观察,同一颜色的小棒方向都是一致的,为了方便记忆,我们也可以把同一方向的棱归为一组,共有3个不同的方向,分为3组,每组4条棱的长度相等。

4、师:现在请大家思考一个问题,当长方体所有棱的长度都相等时,它会变成什么图形?(正方体)(课件)下面请同学们拿出自己准备的正方体,认真观察,根据长方体的特征,结合大屏幕上的问题,同桌合作研究正方体的特征。(师出示课件)。

学生观察,讨论。

5、师:谁来说一说正方体有哪些特征?

生1:正方体也有6个面,6个面都是正方形的。

生2:正方体所有的面完全相等,

生3:它有12条棱,所有的棱的长度都相等。

生4:有8个顶点。

师:同学们真聪明,下面咱们一起来看大屏幕。

正方体教学设计篇七

教学内容:书本24页例2.

教学目标:

(1)通过动手操作,使学生理解表面积的意义,初步掌握长方体和正方体的表。

面积的计算方法。

(2)使学生会运用表面积的意义,解决生活中的简单问题。

(3)运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。

教具准备:

多媒体课件、长方体和正方体纸盒。

学具准备:

长方体和正方体纸盒各一个。

教学过程:

一、复习。

1、口算。

0.25×4=0.125×8=4.5+5.5=1.2-0.2=。

8.1÷9=0.42×6=1.8+2.2=0.2×5=。

2、填空。

(1).长方体有()个面,()条棱,()个顶点。

(2).长方体相对的两个面的面积(),相对的棱的长度。()。

(3).正方体的()个面都是()形,它们的面积都(),十二条棱的长度都()。

(4).相交于一个顶点的三条棱的长度分别叫做长方体的()。

(5).长、宽、高都相等的长方体叫做(),也叫做()。

二、探讨新课。

1、什麽叫长方体的表面积?长方体的表面积=()=()。

3、汇报小结:

(1)正方体6个面的面积总和,叫做它的表面积。

(3)质疑:棱长×棱长能算出什么?再×6又算出什么?

(4)计算长方体的表面积需要哪些条件?计算正方体的表面积需要哪些条件?

(5)尝试练习:例:一个正方体纸盒,棱长3厘米,求它的表面积。

三、巩固练习。

1、一个正方体的棱长是1.2分米,求它的表面积。

4、填空。

(1)、一个正方体的表面积是54平方米,它的一个面的面积是()平方米。

(2)、一个正方体的棱长总和是48分米,它的表面积是()平方分米。

(3)、一个长方体的长是4分米,宽是2分米,高是1分米,它的表面积是()平方厘米。

四、全课小结长方体的表面积=长×宽×2+长×高×2+宽×高×2。

=(长×宽+长×高+宽×高)×2。

教学反思:

本节课教学《正方体的表面积》是在掌握正方体的特征和理解长方体的表面积计算的基础上进行的,本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。

1、让学生运用长方体的表面积计算方法迁移到正方体。培养迁移能力。

2、利于正方体的特征小组讨论正方体的表面积的计算方法,培养空间思维能力。

3、巧编习题,以“练”促思。学生在算式说意义的过程中很自然地发现了正方体表面积的计算方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,在师生共同参与和评价中,达到优化思维。

本节课也有不足之处,练习的强度还要提高。

正方体教学设计篇八

2.使学生会计算圆柱的侧面积或全面积.。

(二)能力训练点。

1.通过圆柱形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;

2.通过圆柱侧面积的计算,培养学生正确、迅速的运算能力;

3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能。

力.。

(三)德育渗透点。

1.通过圆柱的实物观察及有关概念的归纳向学生渗透“真知产生于实践”的观点;

2.通过应用圆柱展开图进行计算,解决实际问题,向学生渗透理论联系实际的观点;

4.通过圆柱轴截面的教学,向学生渗透“抓主要矛盾、抓本质”的矛盾论的观点.。

(四)美育渗透点。

通过学习新知,使学生领略主体图形美与平面图形美的联系,提高学生对美的认识层次.。

重点·难点·疑点及解决办法。

1.重点:

(1)圆柱的形成手段和圆柱的轴、母线、高等概念及其特征;

(2)会用展开图的面积公式计算圆柱的侧面积和全面积.。

2.难点:对侧面积计算的理解.。

教学步骤。

(一)明确目标。

在小学,大家已学过圆柱,在生活中我们也常常遇到圆柱形的物体,涉及到圆柱形物体的侧面积和全面积的计算问题如何计算呢?这就是今天“7.21圆柱的侧面展开图”要研究的内容,圆柱和圆锥的侧面展开图。

(二)整体感知。

〔三〕教学过程。

(幻灯展示生活中常遇的圆柱形物体,如:油桶、铅笔、圆形柱子等),前面展示的物体都是圆柱.在小学,大家已学过圆柱,哪位同学能说出圆柱有哪些特征?(安排举手的学生回答:圆柱的两个底面都是圆面,这两个圆相等,侧面是曲面.)。

(教师演示模型并讲解):大家观察矩形abcd,绕直线ab旋转一周得到的图形是什么?(安排中下生回答:圆柱).大家再观察,圆柱的上、下底是由矩形的哪些线段旋转而成的?(安排中下生回答:上底是以a为圆心,ad旋转而成的,下底是以b为圆心,bc旋转而成的.)上、下底面圆为什么相等?(安排中下生回答:因矩形对边相等,所以上、下底半径相等,所以上、下底面圆相等.)大家再观察,圆柱的侧面是矩形abcd的哪条线段旋转而成的?(安排中下生回答:侧面由dc旋转而成的'.)。

矩形abcd绕直线ab旋转一周,直线用叫做圆柱的轴,cd叫做圆柱的母线.圆柱侧面上平行于轴的线段都叫做圆柱的母线.矩形的另一组对边ad、bc是上、下底面的半径。

圆柱一个底面上任意一点到另一底面的垂线段叫做圆柱的高,哪位同学发现圆柱的母线与高有什么数量关系?(安排中下生回答:相等.)哪位同学发现圆柱上、下底面圆有什么位置关系?(安排中下生回答:平行)a、b是两底面的圆心,直线ab是轴.哪位同学能叙述圆柱的轴的这一条性质?(安排中等生回答:圆柱的轴通过上、下底面的圆心)哪位同学能按轴、母线、底面的顺序归纳有关圆柱的性质?(安排中上学生回答:圆柱的轴通过上、下底面的圆心,且垂直于上、下底,圆柱的母线平行于轴且长都相等,等于圆柱的高,圆柱的底面圆平行且相等.)。

(教师边演示模型,边启发提问):现在我把圆柱的侧面沿它的一条母线剪开,展在一个平面上,观察这个侧面展开图是什么图形?(安排中下生回答,短形)这个圆柱展开图——矩形的两边分别是圆柱中的什么线段?(安排中下生回答:一边是圆柱的母线,一边是圆柱底面圆的周长).大家想想矩形面积公式是什么?哪位同学能归纳圆柱的面积公式?(安排中下生回答:底面圆周长×圆柱母线)大家知道圆柱的母线与高相等,所以圆柱的面积公式还可怎样表示?(安排中下生回答:)。

矩形的ad边是圆柱底面圆的什么?(安排中下生回答:直径.)题目中的哪句话暗示了ad是直径?(安排中上生回答:第一句,“把一个圆柱形木块沿它的轴剖开,得矩形abcd”.因圆柱轴过底面圆的圆心,矩形过轴则意味ad过底面圆圆心,所以ad是圆柱底面圆直径.)cm是告诉了圆柱的什么线段等于30cm?(安排中下生回答:圆柱的高等于30cm)什么是圆柱的表面积?哪位同学知道?(安排中上生回答:圆柱侧面积与两底面圆面积的和.)同学们请完成这道应用题.(安排一中上生上黑板做题,其余在练习本做)。

解:ad是圆柱底面的直径,ab是圆柱母线,设圆柱的表面积为s,则。

答:这个圆柱形木块的表面积约为.。

请同学们任拿一正方形纸片围围看.哪位同学发现正方形相邻两边,一边是圆柱的什么线段,另一边是圆柱底面圆的什么?(安排中下生回答:一边是母线,另一边是底面圆周长.)。

此题要求的是底面圆直径,所以只要求出正方形的什么即可?(安排中下生回答:边长.)边长可求吗:(安排中下生回答:可求,因为已知中给了正方形的面积.)。

请同学们完成此题.(安排一中等生上黑板完成,其余在练习本上完成)。

解:设正方形边长为x,圆柱底面直径为d.。

则,依题意(cm)。

答:这个圆柱的底面的直径约为9.6cm.。

(四)总结、扩展。

本节课学习了圆柱的形成、圆柱的概念、圆柱的性质、圆柱的侧面展开图及其面积计算.。

然后按总结顺序;依次提问学生,此过程应重点提问中下生.。

布置作业。

教材p.187练习1、2;p.192中2、3、4,初中数学教案《圆柱和圆锥的侧面展开图》。

正方体教学设计篇九

2、通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和长方体表面积计算方法,培养学生的动手操作、观察、抽象概括、探究问题的能力和初步的空间观念。

3、使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。

理解长方体、正方体表面积的意义和掌握长方体表面积计算方法。

确定长方体每一个面的长和宽。

第一课时。

1、什么是长方体的长、宽、高?

2、指出长方体纸盒的长、宽、高,并说出长方体有什么特征?正方体有什么特征?

同学们,在我们的日常生活中有许多精美的包装盒,工人师傅在制作这些纸盒时至少要用多少纸板呢?这就是我们这节课要研究的主要内容。

板书课题“长方体和正方体的表面积”:当你看了课题以后,你想知道什么?

1.初步认识长方体的表面积。

2.初步认识正方体的表面积。

请你拿出长方体或正方体纸盒,也用同样的方法剪开,再展开,看看展开后的形状,然后在展开后的图形中,分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面。

深化主题。

1、探索活动:长方体的表面积。

2、集体研讨:学生归纳,

老师板书:长方体表面积:长×宽×2+长×高×2+高×宽×2或:(长×宽+长×高+高×宽)×22。出示例1做一个微波炉的包装箱,长0.7米,宽0.5米,高0.4米,至少要用多少平方米的硬纸板?学生独立计算,教师巡视,选择两种算法,指定两名学生上黑板板书,并口述列式计算的依据。

3、小结:计算长方体的表面积,关键是要正确找出3组面中每个面的长和宽。同学们真爱动脑筋,我们计算时可以选择最简便的算法。

4、迁移:把高0.4米改为0.5米,怎样计算?学生讨论,交流汇报:

这是一个特殊的长方体,有两个相对的面是正方形,四个完全一样的长方形(只列算式不计算结果)。

勇闯第二关:智力冲浪园。

教后反思:

正方体教学设计篇十

1、知识与技能目标:通过学习,让学生知道长方体和正方体的各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。

2、过程与方法目标:让学生经历观察,交流,归纳等认识长方体和正方体特征的过程。

3、情感态度与价值观目标:让学生积极主动参与数学活动,在总结和归纳长方体、正方体的特征以及关系的过程中获得积极的学习体验。

教学难点:建立“立体图形”的空间概念,了解长方体、正方体的关系。

(一)创设情境,导入新课。

用多媒体向学生展示一些基本图形长方形、正方形、三角形、平行四边形、梯形,询问学生:“这些图形我们统称为什么形?”在学生回答称为平面图形。

让学生拿出自己准备的盒子,观察之后告诉他们像盒子这样占有一定空间的图形,叫立体图形,今天我们我们来研究立体图形中的长方体和正方体的特征,并板书课题——长方体和正方体的认识。

(二)探究新知。

1、认识长方体的面、棱、顶点。

首先请学生拿出已准备好的长方体(学具),闭上眼睛摸一摸,想一想:“长方体是由什么围成的?两个面相交处有什么?三条棱相交处有什么?”让学生告诉我他们的发现,然后将拿出长方体,边摸边讲解:什么叫面、棱、顶点。

请学生用手中的学具四人一小组研究长方体和正方体面、棱、顶点的特征,完成表格。

给出了三组小棒,让学生判断哪组可以组成长方体。学生汇报正方体的面、棱、顶点的特征。

让学生总结前面讲到的长方体、正方体的特征,并进行对比,说一说它们相同点和不同点。

(三)多种练习,巩固新知。

(四)课堂小节。

让学生谈一谈体会,概括本节课所学知识。

正方体教学设计篇十一

(三维)。

1、根据正方体的特征,推导出正方体表面积的计算方法。

2、学会解决实际生活中有关正方体表面积的计算问题,培养思维的灵活性。

3、感受数学与生活的密切联系,体会数学学习的价值。

教学。

重点与难点。

教学重点:正方体表面积的计算方法。

教学难点:解决生活中有关长方体、正方体表面积的计算问题。

教学。

方法与手段。

教学方法:观察法、演示法。

教学手段:迁移类推-自己发现-总结方法。计算正方体的表面积是在计算长方体表面积的基础上进行教学的。所以把迁移类推的机会留给学生,让学生自己去发现,类推出正方体表面积的计算方法,以培养学生的逻辑思维能力和再创造能力。

使用教材的构想。

在操作与观察中,将知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成正方体表面积的表象,建立概念,以动促思,引导学生在探索中发现和总结出计算正方体的方法,让学生充分发表自己的见解,在多种算法的交流中,选择适合自己的算法,培养创新意识。

第二课时:正方体表面积的计算。

教学内容:教材第35页例2及练习六的相关题目。

教学过程:

一、复习引入。

1、什么是长方体的表面积?

2、计算下图长方体的表面积。(图略。长5分米,宽4分米,高3分米)。

3、什么是正方体的表面积?正方体6个面有什么关系?每个面的面积怎样算?

二、实践探索。

1、教学例2。

看看昨天自己剪开的正方体表面展开图,大家能说出正方体的表面积如何求吗?

要想知道包装这个礼盒至少要多少包装纸,也就是求什么?

“至少”是什么意思?

学生列式计算,并说说第一步算出的是什么?第二步算出的是什么?(指名板演,集体订正)。

2、p35页做一做。

让学生独立完成,教师巡视,了解学生的解答情况,看学生是否注意到鱼缸上面没有盖,适时提醒。最后组织学生汇报答案,集体订正,订正。

作业设计:

p36第6题。

p37第7题。

p36第4、5、6题。

板书设计:

正方体教学设计篇十二

1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。

2、让学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

3、让学生进一步感受立体图形的学习价值,增强学习数学的兴趣。

长方体和正方体表面积的含义及其计算方法的推导过程。

长方体、正方体模型。

一、猜测导入

出示两个纸盒(一个长方体、一个正方体)。

提问:长方体和正方体有哪些特征?

谈话:这两个纸盒,看起来大小差不多,请你猜一猜,做哪个纸盒用的硬纸板多?

有什么方法可以证明你的猜测是否正确?(引导可以计算它们所用的硬纸板的面积,然后再比较)

二、探究新知

1、引导探究长方体表面积的.计算方法。

教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积。

(2)学生独立列式,指名汇报,并根据学生回答进行板书。

解法一:6×5×2+6×4×2+5×4×2=60+48+40=148(平方厘米)

解法二:(6×5+6×4+5×4)×2=(30+24+20)×2=74×2=148(平方厘米)

答:至少要用148平方厘米的硬纸板。

2、自主探究正方体表面积的计算方法。

(2)学生独立尝试解答,提醒学生根据正方体的特征进行思考。

(3)组织交流反馈。

3、揭示表面积的含义。

揭示:长方体或正方体6个面的总面积,叫做它的表面积。

(板书课题:长方体和正方体的表面积)

三、练习巩固

完成课本“练一练”以及练习四第一、二、五题。

四、全课小结

五、布置作业

1、做练习四第三、四题。

正方体教学设计篇十三

3、长方体和正方体的体积。

1、通过观察和操作,认识长方体和正方体的特征以及它们的展开图。

2、通过实例,了解体积(包括容积)的意义及度量单位(立方米、立方分米、立方厘米、升、毫升),会进行单位之间的换算,感受1m3、1dm3、1cm3以及1l、1ml的实际意义。

3、结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,并能运用所学知识解决一些简单的实际问题。

4、探索某些实物体积的测量方法。

1、注意联系生活实际。

(1)结合学生熟悉的事物认识图形和概念。

(2)注意用所学的知识解决实际问题。

(3)选取具有鲜明时代特征的素材。

2、更加重视对概念的理解。

先通过“乌鸦喝水”的.故事,以形象生动的方式,让学生初步感知物体占有空间。然后通过把石头放入有水的玻璃杯里的实验,让学生进一步体验物体确实占有空间,为引出体积概念做充分的感知准备。计算不规则物体的体积,让学生利用已建立的体积概念想到可以用排水法求得不规则物体的体积,加深对体积概念的认识。

3、加强动手实践、自主探索,让学生经历知识的形成过程。

本单元一些概念和计算方法都是通过学生动手操作、自主探索来学习的。如,长方体体积的计算方法,先让学生用1cm3的正方体拼摆出不同的长方体,通过对这些长方体的相关数据的观察、分析和归纳,自己发现长方体的体积与它的长、宽、高之间的内在关系,从而总结出长方体体积的计算公式。

4、对一些内容进行了调整。

不再安排对体积和表面积进行对比的例题。

长方体、正方体的特征

长方体、正方体的关系

表面积

表面积计算

3、长方体和正方体的体积

体积和体积单位

体积计算公式

体积单位间的进率

容积和容积单位

正方体教学设计篇十四

课前我让学生预习了例题,并让他们尝试把一个正方体(长方体)纸盒按例题的方法剪开,初步感知长方体和正方体的表面展开图。课上交流预习成果后,我示范了正方体沿红色棱剪开的过程,并出示剪开后的图形。

并让学生再一次亲自动手剪一剪,经历立体到展开图的转化过程,从中明白展开图是平面图形,清楚地看到展开图由6个相同的正方形组成。再让他们沿着不同的'棱剪一下,再复原。引导学生观察正方体纸盒展开后的形状,让他们回想展开图中的每一个正方形是纸盒中的哪个面并标注出来,再从中发现规律。让学生通过操作、交流,自己感知,再观察不同形状的展开图进一步发现规律,体会展开后相对的面总是隔开的。为长方体纸盒的展开积累了经验,并发展了学生的空间观念。

正方体教学设计篇十五

第二单元《长方体和正方体》的整理复习,第十单元第20—24题及第30题。

组织学生根据提供的表格,自己整理、复习长方体和正方体的相关知识,掌握长、正方体的基本特征;正确计算长方体、正方体的棱长总和、底面积、表面积、不完全表面积和体积、容积;解决生活中的实际问题。进一步认识长方体和正方体之间的联系,会用底面积乘高计算体积,认识侧面积,会用侧面积加底面积计算表面积,并适当延伸推广到常见的圆柱体、多面柱体等。通过媒体演示,让学生感受点的运动形成线、线的运动形成面、面的运动形成体,初步感知点线面体等几何要素之间的联系,培养学生空间观念、空间想象能力。

1、学生应用表格法整理长方体正方体相关知识,掌握长正方体的基本特征。

2、正确进行长正方体的有关面积和体积的计算。

3、沟通长正方体之间的联系,适当延伸推广到各种柱体。

4、初步感知点线面体等几何要素之间的联系,培养学生空间观念、空间想象能力。

整理掌握长正方体的特征,正确应用。

沟通长正方体的联系及推广延伸。

ppt课件。

1、出示:“xxx”一个点,问:同学们猜猜,这个“点”运动以后会留下什么?

2、动画演示:点运动的过程和留下的痕迹。(直线、曲线、折线等)点运动成线。想象生活中点动成线的例子。(看到的喷气式飞机飞过留下的痕迹,流星、礼炮等的痕迹。)。

3、问:点运动成线,线运动成什么呢?请看动画演示:线运动的过程和留下的痕迹。(长方形、正方形、平行四边形、梯形、圆形等)线运动成面。想象生活中线动成面的例子。(用粉笔擦擦黑板就是线运动形成面、甩动竹杆、甩动系着球的短线)小球这个点运动得到一条曲线—圆周,这条短线运动得到一个面——圆面。(动画演示)。

问:面的`运动又该成什么呢?猜猜看。

生猜,师说,(长方体、正方体、圆柱体、圆锥体等)动画演示:面运动的过程和留下的痕迹。面运动成体。想象生活中面动成体的例子。(一枚硬币在桌子上竖起旋转形成一个球等)。

4、师:点动成线,线动成面,面动成体,这就是数学知识之间的联系。我们要善于发现知识之间的联系,融会贯通地学习掌握知识。这学期我们主要学习了长方体、正方体的有关知识,今天我们一起来复习一下,(板书:长方体正方体的复习)。希望大家能把这部分知识和前面学习过的相关知识联系,也能和我们虽然没学过但生活中见到过的现象联系起来,梳理知识,把握联系,解决实际问题。

师:前面大家学的都不错,你能按照下面的表格把长方体正方体的知识梳理一下吗?(出示表格)。

学生可独立完成或者分组完成,小组交流,核对答案。

指名汇报,自由订正。

师:看得出来,同学们掌握的很好,我想运用这些知识解决生活中的一些应用也一定是小菜一碟吧。

第一层次:练习课本第117页第20—22题。

学生独立完成,指名说出算式。核对答案。有错订正。

层次:讨论。

提问:刚才这2个同学做得非常好,你能告诉大家在计算表面积和体积的时候有什么需要提醒大家的吗?可以结合我们当时学习时的具体题目对大家说说。

讨论1:分清楚是计算表面积还是体积。

提问:你认为怎么分清楚?根据题目意思或者问题单位来分清楚。(举例见前面第二单元中第32页第8、9题和第34页第5—7题。)。

讨论2:是计算底面积还是计算表面积。

讨论3:如果是计算表面积还要注意是算几个面及计算哪几个面。

教师小结:是的,计算表面积有时是算6个面的,我们通常称为计算表面积;对于没有6个面的,我们通常说不完全表面积,在计算的时候要注意是哪几个面,分别该怎样算。(第二单元第17页第6题和第p18页第7、8题。)。

谈话:看来很多同学关于长方体和正方体表面积计算掌握得不错,对下面这个实际问题你准备怎么解决呢?第118页第23、24题。

学生先独立思考,写出方案或者算式,组内交流。

加强联系。

提问:现在再回头看这张表格,从这份表格你还能发现长方体正方体之间有什么联系吗?

学生交流:正方体是特殊的长方体。(增加一行,填写在特征栏目)体积等于底面积乘高。(写在体积栏目)。

1、出示第120页第30题。

引导学生思考并理解“利用率”后再解答。

引导学生分析要求小正方体的体积必须先求出它的棱长,要求小正方体的棱长又可以根据大正方体的表面积来求。

引导学生分析根据正方体的棱长可以先求出水的体积,再求水面的高度。

1、课内作业:第117、118页第23、24题、第120页第30题。

2、课外作业:补充相关练习。

正方体教学设计篇十六

(三维)

1、根据正方体的特征,推导出正方体表面积的计算方法。

2、学会解决实际生活中有关正方体表面积的计算问题,培养思维的灵活性。

3、感受数学与生活的密切联系,体会数学学习的价值。

教学

教学重点:正方体表面积的计算方法。

教学难点:解决生活中有关长方体、正方体表面积的计算问题。

教学

教学方法:观察法、演示法。

教学手段: 迁移类推-自己发现-总结方法。计算正方体的表面积是在计算长方体表面积的基础上进行教学的。所以把迁移类推的机会留给学生,让学生自己去发现,类推出正方体表面积的计算方法,以培养学生的逻辑思维能力和再创造能力。

使用教材的构想

在操作与观察中,将知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成正方体表面积的表象,建立概念,以动促思,引导学生在探索中发现和总结出计算正方体的方法,让学生充分发表自己的见解,在多种算法的交流中,选择适合自己的算法,培养创新意识。

第二课时:正方体表面积的计算

教学内容:教材第35页例2及练习六的相关题目。

教学准备:正方体展开图。生:正方体纸盒。

一、复习引入

1、什么是长方体的表面积?

2、计算下图长方体的表面积。(图略。长5分米,宽4分米,高3分米)

3、什么是正方体的表面积?正方体6个面有什么关系?每个面的面积怎样算?

二、实践探索

1、教学例2

看看昨天自己剪开的正方体表面展开图,大家能说出正方体的表面积如何求吗?

要想知道包装这个礼盒至少要多少包装纸,也就是求什么?

“至少”是什么意思?

学生列式计算,并说说第一步算出的是什么?第二步算出的是什么?(指名板演,集体订正)

2、p35页做一做

让学生独立完成,教师巡视,了解学生的解答情况,看学生是否注意到鱼缸上面没有盖,适时提醒。最后组织学生汇报答案,集体订正,订正。

作业设计:

p36第6题

p37第7题

p36第4、5、6题。

正方体教学设计篇十七

1.通过观察、操作等活动,认识正方体,掌握正方体的特征。

2.通过小组合作学习,探究长方体与正方体的联系与区别。

3.通过学习活动培养操作能力和合作意识,发展空间观念。

教学重难点。

教学重点:掌握正方体的特征,理清长方体和正方体的关系。

教学难点:建立立体图形的概念,形成表象。

教学工具。

正方体纸盒小正方体若干个。

教学过程。

一、复习导入,引入新课。

1.课件出示长方体,请学生用语言描述长方体的特征。

2.看上图,说出这个长方体的长、宽、高各是多少厘米。

3.引导学生想象导入新课。

当这个长方体的长、宽、高都相等时,这个长方体变成了什么?

4.像这样由6个完全相同的正方形围成的立体图形就是正方体。(板书课题)这节课我们就来学习和研究正方体。

二、运用旧知的迁移,概括正方体的特征。

1.引导学生回忆上节课是从哪几个方面研究长方体的特征的。(板书:面、棱、顶点)出示例3。

2.组织学生根据正方体实物尝试自主探究正方体的特征。

三、观察、讨论理清长方体和正方体的联系和区别。

1.引导学生讨论:长方体和正方体有什么相同点和不同点?指导学生填写记录单。(教师巡视指导)。

2.讨论长方体和正方体的关系。

3.尝试用集合图来表示长方体和正方体之间的关系。

(1)先回忆上节课所学的知识,然后从面、棱和顶点三个方面来汇报长方体的特征。

(2)拿出准备好的正方体纸盒,从面、棱和顶点三个方面有目的地观察、讨论正方体有什么特征。把自己的发现记录下来。

(3)在小组内选一个代表汇报观察、讨论的结果,全班进行总结并汇报。

面:6个(都是正方形),每个面完全相同,面积都相等。

棱:12条,每条棱的长度都相等。

顶点:8个。

4.对照长方体和正方体模型,从面、棱和顶点三个方面进行区分,在小组内交流自己的想法,填写记录单。

5.通过讨论得出:正方体是特殊的长方体。

6.动手操作,交流后展示成果。

四、巩固提升。

1.完成教材第20页“做一做”。

2.完成教材第21页第6题。

五、课堂总结。

1.今天这节课,大家有什么收获?

2.布置作业。

正方体教学设计篇十八

结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。

知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。

3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。

1、长方体、正方体表面积的意义和计算方法。

2、确定长方体每一个面的长和宽。

1、长方体、正方体表面积的意义和计算方法。

2、确定长方体每一个面的长和宽。

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

学具:长方体、正方体纸盒、剪刀。

一、复习准备。

(一)口答填空。

1、长方体有()个面,一般都是(),相对的面的()相等;

2、正方体有()个面,它们都是(),正方形各面的()相等;

4、这是一个(),它的棱长是()厘米,它的`棱长之和是()厘米。

(二)说一说长方体和正方体的区别?

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)。

二、学习新课。

(一)长方体和正方体表面积的意义。

1、教师提问:什么叫做面积?

长方体有几个面?正方体有几个面?

(用手按前、后,上、下,左、右的顺序摸一遍)。

2、教师明确:这六个面的总面积叫做它的表面积。

3、学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积。

4、教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

(二)长方体表面积的计算方法。

1、学生归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

前后两个面大小相等,它是由长方体的长和高作为长和宽的;

左右两个面大小相等,它是由长方体的高和宽作为长和宽的。

2、教师提问:想一想,长方体的表面积如何计算?(学生讨论)。

老师板书:

上下面:长×宽×2。

前后面:长×高×2。

左右面:高×宽×2。

3、练习解答。

做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

4、巩固练习。

一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?

教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?

学生:应该少算上边的一面。

列式:4×3+4×2.5×2+3×2.5×2。

1、教师提问:正方体的表面积如何求吗?

学生:棱长×棱长×6。

2、试解例2。

一个正方体纸盒,棱长3厘米,求它的表面积。

32×6。

=9×6。

=54(平方厘米)。

答:它的表面积是54平方厘米。

教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

学生:少一个面。列式:32×5。

教师明确:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。

3、巩固练习:一个正方体的面积是1.2分米,求它的表面积。

三、巩固反馈。

2、一个正方体的棱长是5厘米,它的表面积是多少平方厘米?

3、判断正误,并说明理由。

(1)长方体的三条棱分别叫它的长、宽、高。()。

(2)一个棱长4分米的正方体,它的表面积是:42×6=48(平方分米)()。

(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个正方体表面积的和小。()。

四、课堂总结。

什么是长、正方体的表面积?长、正方体的表面积如何计算?

【本文地址:http://www.pourbars.com/zuowen/15725050.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map