最新小学数学一元一次方程的应用教案(实用14篇)

格式:DOC 上传日期:2023-11-27 14:32:07
最新小学数学一元一次方程的应用教案(实用14篇)
时间:2023-11-27 14:32:07     小编:温柔雨

教案是一种教师为了达到预设的教学目标,按照一定的教学步骤和方法,对教学内容进行详细规划和安排的书面材料,它是教师教学的重要参考工具。教案可以帮助教师在教学过程中合理安排时间、确定教学重点和难点、选择合适的教学策略和资源等,提高教学效果,促进学生的自主学习和合作学习。在教案中,教师应该注重培养学生的综合素质和团队精神。在下面为您展示了一些教学设计的样例,供您参考借鉴。

小学数学一元一次方程的应用教案篇一

1、 经历由实际问题抽象为方程模型的过程,进一步体会模型化的思想。

2、 通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题,解决问题的能力。

探究实际问题与一元一次方程的关系。

建立一元一次方程解决实际问题

(师生活动)设计理念

创设情境提出问题

信息社会,人们沟通交流方式多样化,移动电话已很普及,选择经济实惠的收费方式很有理实意义。

出示教科书80页的例2;观察下列两种移动电话计费方式表:

全球通神州行

月租费50元/月0

本地通话费0.40元/分0.60元/分

1、 你能从中表中获得哪些信息,试用自己的话说说。

2、 猜一猜,使用哪一种计费方式合算?

3、 一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?

4、 对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗? 本例是一道与生活相关的移动电话收费的问题,让学生讨论选择经济实惠的收费方式很有现实意义。

理解问题是本身是列方程的基础,本例是通过表格形式给出已知数据的,通过设计问题1、2、3让学生展开讨论,帮助理解,培养学生的读题能力和收集信息的能力。

解决问题学生充分交流讨论、整理归纳

解:1、用全球通每月收月租费50元,此外根据累计通话时间按0.40元/分加收通话费;用神州行不收月租费,根据累计通话时间按0.60元/分收通话费。

2、 不一定,具体由当月累计通话时间决定。

3、全球通神州行

200分130元120元

300分170元180元

0.6t=50+0.4t

移项得 0.6t-0.4t=50

合并,得0.2t=50

系数化为1,得t=250

以表格的形式呈现数据,简单明了,易于比较。

通过探究实际问题与一元一次方程的关系,提高分析问题,解决问题的能力。

学生练习,教师巡视,指导,讨论解是否合理

知识梳理 小组讨论,试用框图概括用一元一次方程分析和解决实际问题的基本过程

学生思考、讨论、整理。

实际问题题

列方程

数学问题 (一元一次方程)

实际问题的答案

数学问题的解

这是第一次比较完整地用框图反映实际问题与一元一次方程的关系。

让学生结合自己的解题过程概括整理,帮助理解,培养模型化的思想和应用数学于现实生活的意识。

小结与作业

布置作业

1、 必做题:教科书82页习题2.2第2题。

2、 一个两位数,个位数字是十位数字的3倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,求原来的两位数。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,本章内容涉及大量的实际问题,丰富多彩的问题情境和解决实际问题的快乐更容易激起学生对数学的兴趣,在本节中,引导学生从身边的移动电话收费,旅游费用等问题展开探究,使学生在现实、富有挑战性的问题情境中经历多角度认识问题,多种策略思考问题,尝试解释答案的合性的活动,培养探索精神和创新意识。

在前面几节学习中,已经对利用一元一次方程解决问题的基本过程进行多次渗透,逐步细化,本节要求学生用框图概括,使学生对应用一元一次方程解决实际问题有较理性的认识,进一步体会模型化的思想。

小学数学一元一次方程的应用教案篇二

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

3、积累活动经验。

感受方程作为刻画现实世界有效模型的意义。

1、课前训练一。

(1)如果||=9,则=;如果2=9,则=。

(2)在数轴上距离原点4个单位长度的数为。

(3)下列关于相反数的说法不正确的是()。

a、两个相反数只有符号不同,并且它们到原点的距离相等。

b、互为相反数的两个数的绝对值相等。

c、0的相反数是0。

d、互为相反数的两个数的和为0(字母表示为、互为相反数则)。

e、有理数的相反数一定比0小。

(4)乘积为1的两个数互为倒数,如:

(5)如果,则()。

a、互为倒数。

b、互为相反数。

c、都是0。

d、至少有一个为0。

2、由课本p149卡通图画引入新课。

3、分组讨论p149两个练习。

4、p150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()。

课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。

解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:

7、随堂练习po151。

p151习题5.1。

小学数学一元一次方程的应用教案篇三

一元一次方程应用题的题型很多,每种题型又不完全孤立,其中有些题型的解题思想有相似之处,如工程问题和行程问题。所以一直受命题者青睐,近年来中考考查的实际问题多贴近生活,而且立意新颖,设计巧妙,所以决不能靠死背题型,要具体分析每一题的实际情况。

小学数学一元一次方程的应用教案篇四

本节课先以龟兔赛跑问题引入,引起学生的学习兴趣,引出本节课课题——行程问题。进而以一个相对较简单的相遇问题开始新课,由于相遇问题学生小学时有所接触,所以该题主要采取学生独立思考的方式进行,以培养学生的自主学习能力。追及问题是本节课的重点也是本节课的难点,因此,关于这个问题的处理是本节课的关键,所以例2并没有直接给出问题,而是采用让学生自己出问题的方式,以唤起学生的思维和问题意识,进而采用小组合作,交流探索的方式解决该问题。

总的来说,本节课完成了教学目标,重点突出,时间安排合理,能调动学生的积极性,让学生积极参与教学。

需要反思的是:在教学中虽然减少了教师的讲解,给学生充足的时间思考,但是教师在做好学法指导,力求做到精而美,让学生学会学习方面还有不足,总是什么都不放心,总想跟学生抢着说,今后需要改进。另外关于部分课件的细节方面存有瑕疵,今后在细节处理方面要多向师傅和其他教师请教、学习,力图做到完美。

利用一元一次方程解应用题是学生学习的一个难点,必须激发学生的学习兴趣,让学生在教师的指导下主动学习。把这些理念,具体落实到教学中,有一定挑战性。我将继续努力与学生共同发展。

小学数学一元一次方程的应用教案篇五

2、掌握等式的性质,理解掌握移项法则。

3、会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。

5、初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。

难点重点:解方程、用方程解决实际问题。

难点:用方程解决实际问题。

师生活动时间复备标注。

二、典例回顾。

(1)。x=5(2)。x2+3x=2(3)。2x+3y=5。

判断下列x值是否为方程3x-5=6x+4的解。

(1)。x=3(2)x=3。

4、解决问题的基本步骤。

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括号,得4x+8x+16=40。

移项及合并,得12x=24。

系数化为1,得x=2。

答:应先安排2名工人工作4小时。

注意:工作量=人均效率人数时间。

本题的关键是要人均效率与人数和时间之间的数量关系。

三、基础训练:课本第113页第1.2.3题。

四、综合训练:课本113页至114页4.5.6.7.8。

五、达标训练:3.7。

课件出示问题明确知识要点。

学生练习基础上,教师点拨。

小学数学一元一次方程的应用教案篇六

3、使学生初步养成正确思考问题的良好习惯。

为了回答上述这几个问题,我们来看下面这个例题。

例1某数的3倍减2等于某数与4的和,求某数。

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

师生共同分析:

1、本题中给出的已知量和未知量各是什么?

2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。

x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉。

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。

(2)例2的解方程过程较为简捷,同学应注意模仿。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案。这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

小学数学一元一次方程的应用教案篇七

2、掌握等式的性质,理解掌握移项法则。

3、会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。

5、初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。

解方程、用方程解决实际问题。

难点:用方程解决实际问题。

二、典例回顾。

(1)。x=5(2)。x2+3x=2(3)。2x+3y=5。

判断下列x值是否为方程3x-5=6x+4的解。

(1)。x=3(2)x=3。

4、解决问题的基本步骤。

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括号,得4x+8x+16=40。

移项及合并,得12x=24。

系数化为1,得x=2。

答:应先安排2名工人工作4小时。

注意:工作量=人均效率人数时间。

本题的关键是要人均效率与人数和时间之间的数量关系。

三、基础训练:课本第113页第1.2.3题。

四、综合训练:课本113页至114页4.5.6.7.8。

五、达标训练:3.7。

六、课堂小结:收获了哪些?还有哪些需要再学习?

小学数学一元一次方程的应用教案篇八

由于对题意理解不透,不能正确的找出相等关系列出方程。

【典型例题】。

(2010年广州中考数学模拟试题(四))如图是2007年5月的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()。

a.27b.36c.40d.54。

小学数学一元一次方程的应用教案篇九

课型新授课。

教学目标1.了解与一元一次方程有关的概念,掌握等式的基本性质,能运用等式的基本性质解简单的一元一次方程。2.经历数值代入计算的过程,领会方程的解和解方程的意义。知道求方程的解就是将方程变形为x=a的形式。3.强调检验的重要性,养成检验反思的好习惯。

教学重点归纳等式的性质;利用性质解方程。

教学难点比较方程的解和解方程的异同;

教具准备天平,砝码,物体。

教学过程。

教学内容。

教师活动内容、方式。

学生活动方式设计意图一。创设情境,引入新课:1.做一做:填表:

x

1

2

3

4

5

2x+1。

教师活动内容、方式。

学生活动方式。

小学数学一元一次方程的应用教案篇十

教师。

王命勇。

学科。

数学。

年段。

初一年。

课题。

时间。

教学目标。

使学生会掌握待定系数法,并能运用解题。

教学重点。

待定系数法。

教学难点。

解方程组。

教学步骤(体现教学内容、教学问题设计、时间安排、板书设计、作业布置和预习等)。

教学方法教学手段学法指导。

教学步骤。

教学方法教学手段。

教学随笔。

小学数学一元一次方程的应用教案篇十一

1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

二、重点:解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

难点:去分母法则的正确运用。

三、学习过程:(一)、复习导入1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)。

像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是(三)例题:例1解方程:解:去分母,得依据去括号,得依据移项,得依据合并同类项,得依据系数化为1,得依据注意:1)、分数线具有2)、不含分母的项也要乘以(即不要漏乘)。

练一练:见p101练习解下列方程:(1)(2)。

(3)思考:如何求方程。

小明的解法:解:去百分号,得同学看看有没有异议?

四、小结:谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。五、课堂检测:

(4)=+1(5)。

六、作业p102:3,10.

小学数学一元一次方程的应用教案篇十二

基础知识:掌握一元一次方程得解法,了解销售中的数量关系。

基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。

基本思想。

方法:通过将实际问题转化成数学问题,培养学生的建模思想;。

基本活动经验体会解决实际问题的一般步骤及盈亏中的关系。

教学重点。

教学难点。

找出已知量与未知量之间的关系及相等关系。

教具资料准备。

教师准备:课件。

学生准备:书、本。

教学过程。

一、创设情景引入新课。

观察图片引课(见大屏幕)。

二、探究。

探究销售中的盈亏问题:。

1、商品原价200元,九折出售,卖价是元.

2、商品进价是30元,售价是50元,则利润。

是元.

2、某商品原来每件零售价是a元,现在每件降价10%,降价后每件零售价是元.

3、某种品牌的`彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为元.

4、某商品按定价的八折出售,售价是14.8元,则原定售价是.

(学生总结公式)。

熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系。

三、探究一。

分析:售价=进价+利润。

售价=(1+利润率)进价。

亏?

(2)某文具店有两个进价不同的计算器都卖64元,

其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?

(3)某商场把进价为1980元的商品按标价的八折出售,仍。

获利10%,则该商品的标价为元.

注:标价n/10=进(1+率)。

(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的。

价格,某种药品在涨价30%后,降价70%至a元,

则这种药品在20涨价前价格为元.

四、小结。

通过本节课的学习你有哪些收获?你还有哪些疑惑?

亏损还是盈利对比售价与进价的关系才能加以判断。

小组研究解决提出质疑。

优生展示讲解质疑。

五、作业布置:

板书设计。

相关的关系式:例题。

课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。

小学数学一元一次方程的应用教案篇十三

在2月21日的xx区教学常规互检协调会上,作为课改核心校的我们,向其他兄弟学校的教务主任和分管教学的副校长提出:教学开放周举行校际间同课异构的设想,这一个设想得到了大家的一致赞同,并在xx中学的课堂开放周中开始实行,在这次活动中,我校两个xx市校际组成员安排到xx中学进行授课,我是其中之一。

在接到这个任务时,我就先向xx中学的同课异构教师——xx老师了解他们的教学进度及学生的学习情况,得知该校学生的整体数学基础比较低。针对这一种情况,我采取导学案的形式来进行总复习,围绕着二元一次方程组解法及其应用展开,首先,我通过二元一次方程、二元一次方程组、方程组的解、二元一次方程组的解题方法的类型、解应用题的步骤等概念入手,帮助学生回顾旧知识。然后,通过两道二元一次方程组的解法让学生进行练习,再来,利用方程组的同解原理,了解二元一次方程组解的意义,最后,我引出xx年中考的那道数学应用题,让学生及时与中考题目进行对接,提高学生的实际解题能力。

在上完课之后,我与xx中学的数学教研组一起进行教研交流,首先,xx中学的同行们非常赞同我的教学设计及教学思路,觉得这样的教学设计学生很容易掌握,思路很清晰。但是,在帮助学生回顾旧知识的时间花得太多,导致后面的综合题没办法展开,应该淡化概念的'教学,强调学生的实际应用能力,同时,也应该通过二元一次方程组的一题多解的形式让学生选择方程组两种解法来比较出方法的优劣,提高学生对于“代入消元法”和“加减消元法”的选择依据。

听了xx中学同行们的建议之后,我也自己反思了一下,觉得现在作为初三年的总复习,应该重视的是学生的理解能力和综合应用能力的提升,而不是纠结于概念的记忆,作为概念的东西只要让学生了解就可以了,重点应放在应用题的分析以及对于二元一次方程组与一次函数之间的关系上,提高学生的综合水平和应用能力。

小学数学一元一次方程的应用教案篇十四

3.使学生初步养成正确思考问题的良好习惯.

教学重点和难点。

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

为了回答上述这几个问题,我们来看下面这个例题.

例1某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。

x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉.

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。

教师应指出:

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);。

(4)求出所列方程的解;。

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

【本文地址:http://www.pourbars.com/zuowen/15677916.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map