2023年代数的教学方案(实用15篇)

格式:DOC 上传日期:2023-11-24 09:44:15
2023年代数的教学方案(实用15篇)
时间:2023-11-24 09:44:15 小编:文锋

方案的制定需要我们的经验和知识,同时也需要我们的创新和灵活性。制定方案时,我们应该关注可持续发展和长远利益,考虑方案的长远影响和可持续性。学习他人的方案可以帮助我们拓宽思路,发现解决问题的新思路。

代数的教学方案篇一

本单元内容繁多,教学时间又少,刚开始复习时,一节课只能复习一些基本概念,并且效果不好,有一部分学生记不住也不会用,特别是因数和倍数一章,学生概念本来就模糊,而且只安排一课时,课后又没有有效的练习,学生复习得很不扎实。我改进了复习方法:在课前出一些有效的练习,课堂上,边练习边复习概念,模糊处及时讲解,效果稍好一点。这部分内容完全复习完后,我总结了以下几点经验:

1、课前教师应整理好复习内容,理解清楚每条概念,合理地把教材中混乱的内容进行分类,学生在复习时就会有条有理。

2、准备一些辅助联系,如果书上练习题不到位,利用额外的题进行讲解,效果较好。

3、家庭作业中,增加计算题练习,我每天让学生额外做一页或两页口算卡,提高学生的计算能力。

4、对于易出错的题目,最好在练习中讲解,不好空讲概念。

存在的问题:

1、大部分孩子只会做笔记,不愿意思考,有些浪费时间。

2、解决问题是教学中的难点,也是考试的重点,但复习这么久了,最不扎实的就是解决问题。六年级上册的分数乘、除法应用题是难点中的'难点,特别是单位“1”未知的问题,应该放在一起复习,进行对比练习,但教材中不但分开复习,而且出现的例题及练习都是最基础的,根本没有达到让学生深入理解的目的。

代数的教学方案篇二

根据学校教科研工作计划,为了加强我校教师队伍建设,鼓励教师积极投身到教学工作中,真正贯彻落实我校“20+25”课改实验精神,达到全面提高我校教师教育教学理论水平和教学业务能力的目的,同时也为全体教师搭建一个展示教学教研才能的.平台,经研究决定,于第十七周在全校范围内开展“教师教学基本功——钢笔字书写比赛”活动。特制定本方案。

组长:z。

副组长:z。

组员:z。

1、书写用笔自备;

2、书写内容与纸张由教务处提供(见附表一);

3、书写时间:40分钟;

4、作品纸上姓名栏处不写姓名,只写编号(见附表二);

5、全体教师参加钢笔字比赛,没有特殊情况不得请假。

1、钢笔字比赛:20xx年6月1日,与校第二次教研活动周活动并轨。

2、结果公布、公示:第十八周。

1、由学校组织专家初评,评出若干作品参加复评;

3、教科室、教务处参考教师的打分情况,综合考评,终评出一二三等奖。

比赛将按参赛个人成绩的高低设置一、二、三等奖各若干名及鼓励奖,所有参赛未获等级奖的教师均发给鼓励奖。

所有获奖教师,将由学校颁发获奖证书及奖品,集中进行表彰。

代数的教学方案篇三

活动设计背景:本学期,我又接了小班,刚入园的孩子,难免有个别哭闹。不但自己哭得很累,而且还影响其他幼儿的情绪。针对这种情况,我准备开展这个活动,让幼儿喜爱幼儿园,体会到幼儿园的乐趣。

1.认识并熟悉幼儿园的环境,培养幼儿喜爱幼儿园的情感;

2.培养幼儿热爱老师的情感,并愿意和其他小朋友友好相处;

3.培养幼儿活泼开朗,积极乐观的性格。

1.有关《幼儿园真快乐》的视频;

2.好香甜的饼干,玩好玩的各种玩具,看好看的图书;

3.《幼儿园像我家》的音乐。

1.初步感知幼儿园的环境,引发喜欢幼儿园的情感;

2.能以愉快的情感参与活动,体验幼儿园生活的快乐。

1.幼儿观看《幼儿园真快乐》的视频,里面有老师和小朋友一起唱歌做游戏的画面,还有和小朋友玩各种玩具的画面,让幼儿感受幼儿园的快乐!

2.通过“开火车”的游戏,组织幼儿参观园内的主要场所。

(1)教师当司机,请幼儿坐上小火车。教师带领幼儿一起念儿歌;“小汽车,笛笛笛,跑到东,跑到西,跑到各个地方玩玩去”

(2)带领幼儿开着火车,参观园内活动室、舞蹈室、阅览室、户外操场等。

a.到活动室玩一玩有趣的玩具。

b.到舞蹈室和哥哥姐姐一起学跳舞蹈。

代数的教学方案篇四

1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;。

2.初步培养学生观察、分析和抽象思维的能力.

教学重点和难点。

重点:列代数式.

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

1用代数式表示乙数:(投影)。

(1)乙数比x大5;(x+5)。

(2)乙数比x的2倍小3;(2x-3)。

(3)乙数比x的倒数小7;(-7)。

(4)乙数比x大16%((1+16%)x)。

(应用引导的方法启发学生解答本题)。

二、讲授新课。

例1用代数式表示乙数:

(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%。

解:设甲数为x,则乙数的代数式为。

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x。

(本题应由学生口答,教师板书完成)。

最后,教师需指出:第4小题的答案也可写成x+16%x。

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积。

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式。

解:设甲数为a,乙数为b,则。

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)。

(本题应由学生口答,教师板书完成)。

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数。

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的`数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n;(2)5m+2。

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)。

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和。

分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a。

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)。

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)。

解:(1)m(m+6)个;(2)(m)m个。

三、课堂练习。

1设甲数为x,乙数为y,用代数式表示:(投影)。

(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商。

2用代数式表示:

(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数。

3用代数式表示:

(1)与a-1的和是25的数;(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数。

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)〕。

四、师生共同小结。

首先,请学生回答:

1怎样列代数式?2列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

五、作业。

1用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

2已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

代数的教学方案篇五

同学们在学习线代的时候觉得有难度。我认为有两个方面的原因:

1.大家在学习了高数后,难免在学习线代时后劲不足;

2.线代知识体系错综复杂,联系比较多,大家往往搞不清联系。

下面,跨考教育数学教研室的向喆老师跟大家说说一些难理解和常考的概念。今天所说的是线性代数中的矩阵学习问题,大家分三个步骤来学习。

首先,构建矩阵知识框架。矩阵这一章在线性代数中处于核心地位。它是前后联系的纽带。具体来说,矩阵包括定义,性质,常见矩阵运算,常见矩阵类型,矩阵秩,分块矩阵等问题。可以说,内容多,联系多,各个知识点的理解就至关重要了。

然后,把握知识原理。在有前面的知识做铺垫后,大家就要开始学习矩阵了。首先是矩阵定义,它是一个数表。这个与行列式有明显的区别。然后看运算,常见的运算是求逆,转置,伴随,幂等运算。要注意它们的综合性。还有一个重点就是常见矩阵类型。大家特别要注意实对称矩阵,正交矩阵,正定矩阵以及秩为1的矩阵。

最后就是矩阵秩。这是一个核心和重点。可以毫不夸张的说,矩阵的秩是整个线性代数的核心。那么同学们就要清楚,秩的定义,有关秩的很多结论。针对结论,我给的建议是大家最好能知道他们是怎么来的。最好是自己动手算一遍。我还补充说一点就是分块矩阵。要注意矩阵分块的原则,分块矩阵的初等变换与简单矩阵初等变换的区别和联系。

最后,多做习题练习。在前面有了知识体系和掌握了知识原理后,剩下的就是多做题对知识进行理解了。有句古话:光说不练假把式。所以对知识的熟练掌握还是要通过做题来实现。同时,我也反对题海战术,做题不是盲目的做题,不是只做不练。做题应该是有选择的做题,做一个题就应该了解一个方法,掌握一个原理。所以,大家可以参考历年真题来进行练习。每做一个题,大家就该考虑下它是怎么考察我们所学的知识点的。如果做错了,大家还要多进行反思。找到做错的原因,并且逐步改正。这样才能长久的提高。

总之,希望大家在学习线性代数的矩阵的时候把握这三个原则,在此基础上,勤思考,多练习,那么大家一定可以学习好,祝大家考研成功!

代数的教学方案篇六

20xx-20xx学年第二学期的教学工作已顺利结束,为了及时、准确了解考试状况,以便不断改进教学,现将本次考试情况总结如下:

一、对试卷的总体评价:

1.命题目的。

1)用于考查学生对基本知识的掌握情况。

2)用于考查学生运用所学知识分析和解决问题的能力。

2.预期结果。

本次考试基本上达到了预期的'目的,试题较科学、严谨、试卷内容覆盖面宽、试卷结构合理,由于本班学生是三年高职生,基础较好、学习态度端正加之复习准备较充分,所以考试成绩较理想。

二、学生成绩分布情况:

三、分析失分的原因;。

本试卷共包括6个大题:

(1)填空题,本题占总分的10%,学生平均得分约8分,掌握较好,说明学生的基础知识较扎实。

(2)选择题,满分30分,平均得分约27分,掌握较好,说明学生对基础知识理解透彻。

(3)判断题,该题满分15分,平均得分约13分,掌握较好,说明学生的判断力较强。

(4)计算题,该题满分31分,平均得分约27分,掌握较好,说明学生的计算能力较强。

(5)证明题,该题满分5分,平均得分约5分,掌握较好,说明学生的基础知识较扎实。

(6)解方程,满分9分,平均得分约7分,掌握一般,说明学生的计算能力欠缺。

其中失分较多的题目是解方程,原因是:

a.三年高职学生的数学基础相对五年高职和三年中职的学生来说要好得多,但随着高校招生规模的扩大及我院招生速度增加,整体学生素质也相对下降,通过一学期的学习,学生的数学水平有很大的提高,但个别学生学习数学的兴趣较底,书面表达能力较差。因此根据要求分析和证明上错误较多,失分情况较多。

b.因学生来源不同,学生的层次不同,内地学生基础普遍较好,本地学生基础相对较差。

四、存在的问题及建议:

a.随着高校招生规模的扩大及我院招生速度增加,整体学生素质也相对下降,招生时应有所选择。

b.教学方法有待改进。

代数的教学方案篇七

佘可欣,中山大学国际金融学院2016级本科生,在《线性代数》的课程学习中获得了第一名的好成绩。

作为理科生,数学是极为重要,大学的专业也和数学密切相关,可偏偏数学却是我致命的弱项,在学好数学的路上付出了很多,也有所收获,但也仅仅只是皮毛。在这里分享我的经验,希望大家有所收获。

一开始学习线代时,便感觉到线代不同于高等数学的地方,在于它几乎从一开始就是一个全新的概念。其研究的范围通常都不是我们能想象到的二维空间,而是上升到n维空间,并且在线性代数的学习过程中,我们几乎都是跟一些新的概念,新的定理打交道,因此理解和记忆起来有相当大的困难,常常是花很久的时间还是理解不了。因此需要课前预习,上课紧跟老师讲解,下课练习课后习题以助更好的'理解掌握。

线性代数主要研究三种对象:矩阵、方程组和向量。这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。因此,学习线性代数时应能够熟练地从一种理论的叙述转移到另一种中去。如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。由此可见,掌握矩阵、方程组和向量的内在联系十分重要。

线代的概念多,比如对于矩阵,有对角矩阵、伴随矩阵、逆矩阵、相似矩阵等。运算法则多,比如求逆矩阵,求矩阵的秩,求向量组的秩,求基础解系,求非齐次线性方程组的通解等。内容相互纵横交错,在学到后面的知识点时常常出现需要和前面的知识点的应用,但经常记不起来,就需要不断地复习前面的知识点。要能够做到当题干给出一个信息时必须能够想到该信息等价的其他信息,比如告诉你一个矩阵是非奇异矩阵,它包含的信息有:首先明确它是一个n阶方阵,它的秩是n,它便是满秩矩阵,它所对应的n阶行列式不等于零,那么n个n维向量便线性无关,还有这个方阵是可逆方阵,并且可以想到它的转置矩阵也是可逆的。

正是因为线性代数各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性较大。因此课本的课后习题要多加练习。万变不离其宗,把握套路,老师也不会太为难我们,基本是在课后题上变形。

数学之路或艰辛,或顺利,四时之景或不同,而乐亦无穷也。数学之乐,得之心而寓之学也。祝大家都能找到适合自己的学习方法,在数学的探索中体味乐趣!

代数的教学方案篇八

关于复习课,一直是我比较困惑的问题,如何上复习课,如何处理教材中的复习题,经常是我思考的问题。《数与代数》这部分内容,包含许多知识,先让我学生前一天自己去用网络图或表格的形式或用自己喜欢的形式去整理,第二天上课时,分组让学生自己交流汇报,教师只充当在黑板上做“记录员”的角色,同时结合相应的练习加以理解巩固,这样改变以前老师炒“冷饭”,学生听得枯燥的形式,学生学得兴趣盎然,觉得此效果比以前成功。在本节课教学中,根据学生的思维特点,让学生通过眼看、口说、动手操作、脑想等多种形式提高对数的运用能力。

1.引导学生主动构建知识体系,尊重学生的个性,让学生学有特色。

在整理的过程中,鼓励学生用简洁、清晰、有特色的形式进行整理。整理的形式多种多样,有的用大括号,有的用表格,有的用集合图的形式,还有的用树状图,借此培养学生独特的个性品质和创新意识。

2.注重学习方法的渗透,让学生学得有法。

本节课中,我首先教给学生整理的方法。在评价各组的整理情况时,让学生比较归纳,这些方案虽然形式不同,但他们都是根据什么来整理的?得到他们都是抓住了整理的关键,也就是根据知识要点和知识见的联系进行整理。并鼓励学生今后用这种方法去整理其他的知识。其次,注重教给学生学生复习的方法,复习过程中教师教师抓住知识的重点、难点进行复习。这样,学生不仅体验获取知识的方法、步骤,而且有利于培养学生的`学习能力,将逐步提高到“会学”的层次。

3.加强数学与现实生活的联系,通过解决实际问题,让学生体会数学的价值。

整理和复习,不是重复的、机械的做题,更重要的是培养学生综合运用知识解决实际问题的能力,教师在复习的过程中,注意设计一些综合运用的习题,使学生在“创造”中享受成功的快乐,人人在“运用”中感受数学的价值,使学生的创新意识和实践能力不断得以提高。

代数的教学方案篇九

教学目标:

通过复习练习,进一步掌握分数、百分数、小数的互化的方法。进一步掌握分数、小数等有关性质。

教学重点、难点:分数、百分数、小数的互化的方法。分数、小数等有关性质。

教学设计:

一、复习小数、分数、百分数、成数、折扣等互化。

表格出示:给出其中一种,要求转化成另外几种数。学生独立完成后,指名交流,说明转化方法。

0.351/4140%六成五八折。

二、分数、小数有关性质及其关系。

出示:12÷()=3/4=():36=()/12=()%。

学生独立填写。交流:你是怎样填写的?填写时从哪开始思考?运用了哪些知识?

三、巩固练习。

1、第86页第12题。

独立完成,说明填写方法。

引导学生发现:第1小题:后面的'数总比前面大,越来越接近1.

第2小题:后面的数总比前面小,越来越接近0。

2、第86页第13、14题。

读题理解要求。再按要求完成。

四、补充练习。

填空题。

1.有一个小数,由8个自然数单位,5个十分之一和22个千分之一组成,这个数写作(),读作(),它的计数单位是()。

2.六亿零六十万零六十写作(),改写成用“万”作单位是(),省略万后面的尾数是(),精确到亿位是()。

3.两个相邻的自然数,它们的差是()。一个自然数既不是质数又不是合数,与它相邻的两个自然数是()和()。

4.如果a+1=b,那么它们的最小公倍数是(),最大公因数是()。

5.把0.625的小数点向左移动两位是(),它缩小了()倍。

6、如果一个小数的小数点向右移动一位后比原来大了32.4,那么原来这个小数是()。

7.五个连续自然数的和是200,这五个自然数分别是()、()、()、()、()。

8.最大的一位纯小数比最大的两位纯小数小();最小的两位纯小数比最小的三位纯小数大()。

9.两个数的积是70,一个因数扩大100倍,另一个因数缩小10倍,积是()。

10.按从小到大的顺序排列下列各数:

0.3291.0241.60.70510.333……0。

选择题。

1.最大的小数单位与最小的质数相差()。

a.1.1b.1.9c.0.9d.0.1。

2.一个自然数的最小倍数是18,这个数的约数有()个。

a.2b.4c.6d.8。

3.小数点向右移动两位,原来的数就()。

a.增加100倍b.减少100倍c.扩大100倍d.缩小100倍。

4.3.999保留两位小数是()。

a.3.99b.4.0c.4.00d.3.90。

5.大于0而小于1的数()。

a.一个也没有b.无数个c.有10个d.以上都不是。

判断题。

1.所有的小数都小于整数。…………………………………………()。

2.在小数的末尾添上3个0,原来的小数就扩大1000倍。………()。

3.循环小数一定是无限小数。………………………………………()。

4.1.666是纯循环小数。……………………………………………()。

5.两个不相等的数,它们的和一定大于它们的差。………………()。

综合题。

1.小李、小刚和小红进行一百米决赛,小李用了0.3分,小刚用了1/4分,小红用了17秒,()得冠军。

2.加工同样一个零件,甲要7/1`5小时,乙要11/12小时,两人相比,()做得快些。

3.已知4/57/()1/2,括号中可以填的整数是()。

4.5÷12的商用循环小数表示是(),保留三位小数是()。

5.一个三位小数精确到百分位是3.48,这个数最大是(),最小是()。

6.在x/5(x为自然数)中,当x()时,这个分数是真分数;当x()时,这个分数是假分数;当x()时,它可以改写成带分数三又五分之一;当x()时,分数值为0。

代数的教学方案篇十

线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如van的名著代数学第二卷就把线性代数作为其中的短短一章。

回顾线性代数的历史基础上,分析了关于线性代数的几个核心问题:第一介绍了几种关于线性代数基本结构问题的看法;第二介绍了关于线性代数的两个基本问题,即“线性”和“线性问题”;第三介绍了线性代数的研究对象;第四分析了线性代数的结构体系。

上世纪80年代以来,随着计算机应用的普及,线性代数理论被广泛应用到科学、技术和经济领域,因此线性代数也成为高等院校理工科各专业的一门基础课程,文章简述线性代数的相关核心核心问题。

线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如van的名著代数学第二卷就把线性代数作为其中的短短一章。但是线性代数的一些初级内容如行列式、矩阵和线性方程组的研究可以追溯到二百多年前;19世纪四五十年代grassmann创立了用符号表述几何概念的方法,给出了线性无关和基等概念,这标准着线性代数内容近代化开始;19世纪末向量空间的抽象定义形成,并在20世纪初被广泛用于泛函分析研究,从而使线性代数成为以空间理论为终结的独立学科,因此可以说线性代数是综合了若干项独立发展的数学成果而形成的。从上世纪六七十年代起线性代数进入了大学数学专业课程,在我国这门课程称为高等代数,它以线性代数为主体并纳入了一章多项式理论。

无论是高等代数或线性代数,这个课程有两个特点:一个特点是各部分内容相对独立,整个课程呈现出一种块状结构,原因是线性代数学科的形成过程本身就没有一条明确的主线。我们几乎可以找到从线性方程组,行列式,向量,矩阵,多项式,线性空间,线性变换中的任何一个分块开始展开的教材,其展开过程主要取决于作者串联这些分块的形式逻辑的脉络。另一个特点是内容抽象,要真正掌握线性代数的原理与方法必须具备较强的抽象思维能力,即对形式概念的理解能力和形式逻辑的演绎能力,而这两种能力要求几乎超越了大多数学生在中学阶段的能力储备,而必须在学习这门课程的过程中重塑。主要是这两个原因,线性代数被认为是一门非常难掌握的课程,而克服这一困难的关键就是针对线性代数课程的这两个特点进行有效的课程改革。

线性代数基本结构问题,学者们历来有许多不同的看法,较为常见的是以下几种:

第一种是以矩阵为中心。

这一看法认为整个线性代数以矩阵理论为核心,将矩阵理论视为各个内容联系的纽带。在求线性方程组、判定方程组的解以及研究线性空间问题时,矩阵理论是重要工具。例如正交矩阵和对称矩阵主要应用于欧氏空间和二次型方程问题中。可见,只要对矩阵知识有了全面系统的理解后,就能将各种问题都化解为矩阵理论中的一部分,引申为矩阵问题。

第二种是以线性方程组为中心。

这一关观点认为线性方程组是线性代数研究的基本问题。具体操作过程中,将线性方程组的理论和方法应用到各个章节,由此引出矩阵、行列式、向量等理论,最后列出方程组、求解,然后进一步应用,串联起各部分内容。这一理论较为系统、科学,常常被初学者采纳。

第三是一种线性代数体系,以线性变换和线性空间为核心。

在学习线性代数之前,学生要先掌握关系、集合、环、群、域等概念,形成对高等数学的研究对象、知识结构、表达方式的初步认识。线性代数体系依次安排了线性空间、内积空间、线性变化、矩阵概念和性质等章节。掌握线性变换基础后,再教学线性方程组求解知识,在此基础上,进一步引出特征向量、特征值和二次型理论。整个体系以线性代数为核心,内容介绍、理论讲解及方法系统化为一个整体。

第四是以向量理论为核心。

对二维、三维直角坐标系的研究是线性代数的起源。学生在中学时就已经了解了关于平面向量的一些基本知识,因此,将向量作为整个线性代数知识的核心,有利于使各部分内容的联系更加密切、理论体系更加完整完善,学生的空间概念也能得以加强。矩阵、行列式、线性方程组一般为研究维向量空间所必须的表示工具、向量的`线性相关性的判别工具)和未知向量的计算工具,从宏观讲它们独立于体系之外,从微观讲它们也是维向量空间的一些具体内容。而二次型仅仅是对称双线性函数的一个简单应用。

四、线性和线性问题。

“线性”这个数学名词在中学数学课程中,学生从未接触过。而这一课程是大学数学的基础课程,学生刚进入大学,对这一词汇的具体内容知之甚少。所以在学习之前,学生必须对什么是“线性”有所了解,在“线性代数”这一课程中有对于“线性”概念的明确介绍。这是学习线性代数要解决的第一个基本问题,即什么是“线性”。

了解了什么是“线性”、什么是“线性问题”后,离完成线性代数的教学目的还有很长一段距离。如今的高校教育,一味灌输给学生行列式、向量、矩阵、线性变换等空洞的数学定理,指导学生用这些理论来思考线性代数的基本结构、具体应用等问题。教师在教学线性代数问题时更是一味强调理论的选择与应用,却忽视了学生发现问题、分析问题、解决问题的能力的培养。

稍微观察一下我们可以发现,中学的初等代数就是线性代数的前身,只是在其基础上的进一步抽象化。初等代数研究的多是具体的问题,运用加减乘除的运算方法即可解决问题;线性代数中则引入了许多新的概念,如向量、向量空间、集合、空间、矩阵等等,问题展现的形式发生了变化,要想解决问题,我们的思维方式也应该发生变化。涉及到新概念的数学问题往往都很抽象,如向量指的是既有数值又有具体方向的量;向量空间是许多量组成的集合,这一集合中的元素全都符合特定的运算规则;集合是具有某种属性的事物的总和;矩阵理论则是一种更加抽象化的理论,因此我们的研究方法和思维方式都要随之进行改变。如初等代数中的基本运算法则性代数中经常会失效,线性代数的研究对象是向量运算、矩阵运算和线性变换,解决问题时,需要采用一种特殊的运算方法。

综上所述,线性代数的学习中应重点培养两个方面的能力:

一个是知识掌握的能力的培养。介绍知识时应坚持从易到难、循序渐进。先掌握好中学的运算法则,再慢慢学习向量、矩阵知识,之后学习线性变换,最后综合学习线性运算。学生经过中学阶段的学习,完全掌握了加法和乘法这两种基础运算法则,简单了解了向量运算。矩阵知识相对于前者更加抽象,因此应放在之后学习。线性变换则是线性代数教学中的重点和难点所在,也是最容易被忽视的地方。由于线性变换可结合映射知识学习,而映射知识在中学数学和微积分教学中都有详细的介绍,在此基础上学生更容易理解线性变换及运算的相关知识,更容易解决矩阵特征值问题、线性方程组问题及二次型问题等。

另外一个是思维能力的培养。在学习中,注意引导学生带着问题学习,并在学习中进一步发现问题、解决问题,这是最有效的思维方式和学习方法。前文提到了学习线性代数必须先了解的两个基本问题:什么是“线性”、什么是“线性问题”。这两个基本问题应该始终贯穿性代数的学习过程中。无论在什么阶段的学习,都要注重理论知识和实际问题的有效结合。学生在掌握了一定的理论知识后,可尝试去解决相关的实际问题。在这一过程中,学生会加深对理论知识的理解,并进一步发现自身知识储备的不足之处。若单单追求知识的应用,而不加深自己的理论素养,最终也无法具备良好的思维能力。所以,在学习线性代数时,要培养好两方面的能力,使之相辅相成、相互促进。

结语:

20世纪后50年计算技术的高速发展,推动了大规模工程和经济系统问题的解决,使人们看到,线性代数和相关的矩阵模型是如微积分那样的数学工具,无所不在的线性代数问题,等待着各层次的工程技术人员快速精确地去解决相关线性代数问题。因此绝大对工科学生而言,数学课应该使他们有宏观的使用数学的思想,要使工程师了解工程中可能遇到的各种数学问题的类别,并且知道应该用什么样的数学理论和软件工具来解决,这是一种高水平的抽象。而了解线性代数的核心问题,无疑对线性代数课程的学习有重要的价值。

代数的教学方案篇十一

基本概念、基本性质和基本方法一直是考研数学的重点,线性代数更是如此。从多年的阅卷情况和经验看,有些考生对基本概念掌握不够牢固,理解不够透彻,在答题中对基本性质的应用不知如何下手,因此,造成许多不应该的失分现象。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基本知识。

二、加强综合能力的训练,培养分析问题和解决问题的能力。

从近十年特别是近两年的研究生入学考试试题看,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。因此,在打好基础的同时,通过做一些综合性较强的习题(或做近年的研究生考题),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握。

三、注重分析一些重要概念和方法之间的联系和区别。

线性代数的内容不多,但基本概念和性质较多。他们之间的联系也比较多,特别要根据每年线性代数考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如:向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关(无关)与齐次线性方程组有非零解(仅有零解)的讨论之间的联系;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家做线性代数的两个大题在解题思路和方法上会有很大的帮助。

代数的教学方案篇十二

1.将下面这些数填入适当的括号里。(54分,每空一分)。

-82.560.7-02+3.141067-0.31。

这些数中,()是整数,()是分数,

()是小数,()是正数,()是负数,()自然数。

2.据中国官方最新公布的统计数据,截至2008.05.31日12时,四川汶川地震已造成68977人遇难,367854人受伤,这个数读作(),失踪17974人。紧急转移安置1514.74万人,读作(),这个数省略“万”后面的尾数约是()。累计受灾人数4554.7565万人。

3.0.6等于()个千分之一。6在十位上所表示的'数比6在十分位上所表示的数多了()。

4.与345000相邻的两个数是()和()。

5.一个多位数的百万位和百位上都是7,十万位和个位上都是5,其他数位上都是0,这个数写作(),四舍五入到万位约是()。

6.三个连续偶数的和是384。这三个偶数中,最小的偶数是()。

7.一个数由3个一,5个百分之一和8个千分之一组成,这个数写作(),读作(),把它精确到十分位是()。

8.0.4=()()=10()=()35=()%。

9.某班5名同学的体重分别是:小金21kg,小陆28kg,小张25kg,小吴22kg,小沈24kg。如果把他们的平均体重记为0,那么这5名同学的体重分别记为:小金(),小陆(),小张(),小吴(),小沈()。

10.两个数的积是70,一个因数扩大100倍,另一个因数缩小到原来的(),积是()。

代数的教学方案篇十三

《线性代数》是工科高校中颇为重要的一门课,也是较抽象难学的一门课程。本文从理论与实践两方面以作者的体会与认识,提出《线性代数》教学抽象概念的讲解应注意的几点问题,阐释了如何进行《线性代数》课程的课堂教学,并且能收到良好的教学效果。

[关键词]。

《线性代数》是高等院校理、工类专业重要的数学基础课。它不但广泛应用于概率统计、微分方程、控制理论等数学分支,而且其知识已渗透到自然科学的其它学科,如工程技术、经济与社会科学等领域。不仅如此,这门课程对提高学生的数学素养、训练与提高学生的抽象思维能力与逻辑推理能力都有重要作用。但由于“线性代数”本身的特点,对其内容学生感到比较抽象,要深入理解与掌握代数的基本概念与基本理论学生感到相当吃力、难以理解。因此,为培养与提高学生应用数学知识、解决实际问题的能力,进一步研究这门课程的教学思想和方法对提高教学效果甚为重要。

一、加强基本概念的教与学。

线性代数这一抽象的数学理论和方法体系是由一系列基本概念构成的。行列式、矩阵、逆矩阵、初等矩阵、转置、线性表示、线性相关、特征值与特征向量等抽象概念根植于客观的现实世界,有着深刻的实际背景,即是比较直接抽象的产物。高等数学与初等数学在含义与思维模式上的变化必然会在教学中有所反映。线性代数作为中学代数的继续与提高,与其有着很大不同,这不仅表现在内容上,更重要的是表现在研究的观点和方法上。在研究过程中一再体现由具体事物抽象出一般的概念,再以一般概念回到具体事物去的辨证观点和严格的逻辑推理。新生刚进入大学,其思维方式很难从初等数学的那种直观、简洁的方法上升到线性代数抽象复杂的方式,故思维方式在短期内很难达到线性代数的要求。大部分同学习惯于传统的公式,用公式套题,不习惯于理解定理的实质,用一些已知的定理、性质及结论来推理、解题等。

在概念的教学中,教师要研究概念的认识过程的特点和规律性,根据学生的认识能力发展的规律来选择适当的教学方式。因此,在概念教学中应注意以下几点。

1.合理借助概念的直观性。

尽管抽象性是《线性代数》这门课的突出特点,直观性教学同样可应用到这门课的教学上,且在教学中占有重要地位。欧拉认为:“数学这门科学,需要观察,也需要实验,模型和图形的广泛应用就是这样的例子。”直观有助于概念的引入和形成。如介绍向量的概念,尽管抽象,但它具有几何直观背景,在二维空间、三维空间中,向量都是有向线段,由此教学中可从向量的几何定义出发讲解抽象到现有形式的过程,降低学生抽象思考的难度。

2.充分利用概念的实际背景和学生的经验。

教师在教学中应充分利用学生已有的数学现实和生活经验,引导和启发学生进行概念发现和创造。如在讲解n阶行列式,首先从学生已掌握的二元、三元一次方程组的求解入手,然后求出方程组的解由二阶、三阶行列式表示,分析二阶、三阶行列式的特点。

二阶行列式,不难看出:它含有两项,若不考虑符号,每项均是来自不同行不同列的两个元素的乘积,那么会提出这样的问题:右边各项之前所带的正负号有什么规律?同样的,三阶行列式若不考虑符号,它含有3!=6项,每项也是来自不同行不同列的三个元素的乘积,并且包含了所有由不同行不同列的三个元素的组合。为解决n阶行列式,又引出排列的概念、性质,介绍奇偶排列后,又回到我们提出的问题上,可以发现,行标按自然排列,列标排列为奇排列时,该项为负;列标排列为偶排列时,该项为正(问题得到解决)。经过这一过程,学生对n阶行列式已有接触和了解,此时可给出n阶行列式定义,这样一来,学生就容易理解和掌握n阶行列式的性质了。

3.注意概念体系的建立。

r.斯根普指出:“个别的概念一定要融入与其它概念合成的概念结构中才有效用。”数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。

二、学生要掌握科学的学习方法。

学习重在理解,学生必须在理解、领悟其深刻含义的基础上记忆定义、定理及一些结论,才能收到理想的效果。线性代数的最大特点就是:知识体系是一环扣一环,环环相连的`。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,教师课前的知识回顾以及学生提前预习是十分必要的。

三、加强对学生解题的基本训练。

一定量的典型练习题能有助于学生深化对所学知识的理解,培养学生一题多解的能力,解题后反思,及时总结解题思路和方法。如证明抽象矩阵的可逆,就有很多方法,一是用定义。二是用秩的有关命题。三是借助于特征值理论。四是证明矩阵的行列式不为零等。

四、培养与激发学生的学习兴趣。

兴趣是最好的老师。教师一方面在传授知识,另一方面要鼓励学生有针对性的设计他们的目标,这样,他们才肯自觉钻研,乐于钻研。同时,课堂教学中可选择近年来研究生入学考题及一些与实际联系较紧的题目讲解或练习,以激发学生的学习欲望,并给他们带来成功的满足。此外,还可以适当介绍一些有趣的应用典范或教学史来激发学生的学习热情,提高他们的学习兴趣。

五、发挥多媒体优势,增强教学效果。

多媒体教学成为当前高校教学模式的重要手段。教师只有把传统教学手段、教师自己的特色和多媒体辅助教学三者有机结合起来,才能真正发挥多媒体课堂教学的效果。总之,教师在教学中所做的一切,其目的应在于既教会他们有用的知识,又教会学生有益的思考方式及良好的思维习惯。

参考文献:

[1]张向阳.线性代数教学中的几点体会.山西财经大学学报(高等教育版),2006.

[2]于朝霞.线性代数与空间解析几何.北京:中国科学技术出版社,2003.

代数的教学方案篇十四

》考研复习的强化阶段已经结束,在这段时间,大家应该把所学的知识系统化综合化。数学题目千变万化,有各种延伸和变形,考生如果想在考研数学中取得好成绩,就一定要认真仔细的复习,重视三基(基本概念、基本方法、基本性质),多思考多总结,做到融会贯通。教材把线性代数的内容分为了六章:行列式、矩阵、线性方程组、向量、特征值和特征向量、二次型。考生在做题过程中,应该能发现,线性代数部分考察的知识点和题型都相对固定,以下我们针对考研数学,对线性代数部分的常考题型进行总结:

一、行列式常考的题型有:1.数值型行列式的计算,2.抽象型行列式的计算。

二、矩阵常考的`题型有:1.对矩阵的运算的考查,2.对逆矩阵的考查,3.初等变换,4.矩阵方程,5.矩阵的秩,6.矩阵的分块。

三、线性方程组与向量常考的题型有:1.向量组的线性表出,2.向量组的线性相关性,3.向量组的秩与极大线性无关组,4.向量空间的基与过渡矩阵,5.线性方程组解的判定,6.齐次线性方程组的基础解系,7.线性方程组的求解,8.同解与公共解。

四、特征值与特征向量常考的题型有:1.特征值与特征向量的定义与性质,2.矩阵的相似对角化,3.实对称矩阵的相关问题,4.综合应用。

五、二次型常考的题型有:1.二次型及其矩阵,2.化二次型为标准型,3.二次型的惯性系数与合同规范型,4.正定二次型。

kaoyan/

代数的教学方案篇十五

为了积极准备区小学语文新生代教师课堂教学比赛活动,根据区教研室文件要求,切实促进我镇青年教师专业素质和教学水平的提高,特将举行本镇的'选拔赛,具体方案如下:

全镇xx年9月至xx年9月参加工作的在职小学语文教师。

1、4月28日——5月3日,由各校教导处上报参赛选手名单,选手提交登记表。

2、5月4日放学前,由教辅室选定并公布上课年级及内容,并通知各校教导处,由各校教导处通知本校参赛教师。

3、5月17日(星期二)。

各选手在7:30到镇中心小学报到,抽签决定上课班级及上课节次,并进行课堂教学比赛。

本次选拔赛,共有6名评委组成,教辅室2名,镇校2名,宁峰小学1名,百梁小学1名。

本次比赛奖项设置如下:

一等奖一名,二等奖一名,三等奖若干名。

六、其它事宜。

1、各校要重视此次活动,以赛代训,以赛促研,以此推进青年教师素质的提高。

2、参赛选手积极准备,潜心专研教材,精心备课,上出有风格、有质量的课。

3、在选拔赛中前两名的教师被推荐参加协作区比赛。

xx中心小学。

xx年5月3日。

【本文地址:http://www.pourbars.com/zuowen/14574074.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map