教案是教师为指导学生学习而精心设计的一份教学计划,它可以帮助教师合理安排教学内容和教学活动,以达到预期的教学效果。一份好的教案应该清晰明确,内容充实,方法灵活。现在我们需要准备一份教案了吧?教案的编写还需要考虑到学生的兴趣点和实际需求,增强他们对知识的主动探究和应用能力。小编为大家整理了一些精选教案范本,供大家参考借鉴。
平行四边形的面积教案篇一
本节课的教学模式大部分是在新授时采用先复习长方形的面积计算公式,接着出示一平行四边形,让学生求其面积,学生很茫然而导致不知其面积,老师就教会学生用数方格的方法让学生数出面积,紧接再比较平行四边形和长方形,它们的什么变了,什么没变,长方形长、宽和平行四边形的底、高有什么关系,既而猜测出平行四边形的面积计算公式,最后进行验证。
结合我班的实际情况,我改变了这种教学模式,先出示一已经画过方格的不规则图形,采用数方格的方法知道其面积,紧接我把这一图形反过来,问:“如果没有这些方格,你有办法知道它的面积吗?略停了一会,其中一生说把凸出的部分剪下来补到凹的地方,这样割补的前后图形的面积没有发生变化,同时也把一个不规则的图形转化成已学的图形,学生顿时恍然大悟,明白了“割补”把问题转化的简单一些,学生在不知不觉中感受了“转化”思想在数学学习中的价值,并且轻松快乐地学着。
第二步:我出示一个长方形框架,告诉长和宽,让学生求面积,学生很快完成,我拉动两角,它变成一个平行四边形,它的面积会发生怎样的变化呢?学生兴致很浓地说出它的变化,为什么会变小呢?平行四边形的面积与什么有关呢?带着这些问题,学习今天的内容。
第三步:学生拿出准备好的平行四边形,让他们测量出需要的数据,求其面积,学生充分调动自己的脑、手、口,参与到探究的过程中。
第四步:想办法验证自己求的面积是否正确?有的学生剪、拼,有的学生看书帮忙,有的小组商议,学习气氛热烈,很快验证完毕,并总结出计算公式。
通过本节课的教学,我认为老师应给学生“做数学”的机会,并提供“做数学”的活动,让学生不仅知其然,而且知其所以然,这样的学习才是有效的,也是学生自己需要的。再一方面,在这种总结公式类型的课,我们不妨多给学生充足的时间和空间,把学生放在主体地位上,多让学生自己去探索、去建构数学模型,这样,学生经历了自我探索,自我发现的过程,学生学习的积极性和主动性也充分发挥出来,同时也树立学习的自信心,学习效率也自然高起来。
读书破万卷下笔如有神,以上就是为大家带来的6篇《《平行四边形的面积》教案》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。
平行四边形的面积教案篇二
师:我们一起回忆一下,已经学过长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)。
师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)。
生活动后汇报如下:
长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米。
(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米。
1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。
你觉得哪种更合理?能不能举个例子,证明哪种是错误的。
生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。
师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?
生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。
师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)。
生:(兴奋地)高!
3、师:用什么办法可以比较它们的面积大小呢?
生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。
师:变成长方形后,面积大小变了没有?
生:没有。
生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。
生:6是长方形的长,也是平行四边形的'底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。
师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。
师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。
根据学生反馈情况进行课件演示,出现几种拼法(略)。
师:这几种剪拼方法有什么相同之处?
生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。
生:在剪拼过程中,图形的形状变了,面积不变。
生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。
师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?
生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。
师:我们用s表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为s=ah。
师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?
平行四边形的面积教案篇三
教学内容。
教材64~66页的例题和“做一做”,练习十六的第1~3题。
教学目标。
能力目标:通过操作进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。
情感目标:引导学生运用转化的思想探索规律。
教学重点。
教学难点。
教学准备。
powerpoint课件、平行四边形纸片、剪刀。
教学过程。
教学环节。
师生活动。
设计意图。
复习引入。
(二)出示不规则图形1。
15米,宽10米,底7米,高21米)求出长方形的面积比平行四边形的面积大,在学生选择清洁区的同时进行思想品德教育。
3、课堂质疑(主要解决学生用平行四边形的底乘以斜边求出面积的问题。)。
结合学生原有认知水平,创设问题情景,把生活问题转化为数学问题,利用矛盾,激发学生的学习兴趣,让学生感受到知识来源于生活,从而产生学习数学的需要。
突破以往的教学思路,不但引导学生转化图形还要让学生明白图形转化的依据,为以后的图形转化起了一个导航的作用。整个过程以学生为主体,培养学生自主探索、合作学习,鼓励他们大胆质疑,开拓和发展学生的创造思维,培养学生发现问题,提出问题,解决问题的能力。同时配合教师的适时点播质疑,把问题引向深入,从而也发挥教师引导者的作用。
公式的推导,建构了学生头脑中新的数学模型:转化图形(依据特征)---建立联系---推导公式。整个过程是学生在实践分组讨论中,不断完善提炼出来的,教师完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。利用所学知识解决了课前矛盾,恰当的进行了思想品德教育,提高了学生学习数学的兴趣。
练习反馈。
底5厘米,高3.5厘米底6厘米,高2厘米。
2、计算下面图形的`面积哪个算式正确?(单位:米)。
83。
4
6
3×83×64×86×83×44×6。
56平方厘米8厘米。
5、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
课堂小结:回忆一下今天推导平行四边形面积公式的过程,(转化图形)---(建立联系)---(推导公式)。而转化图形和建立联系这两个环节都利用了图形的特征来进行。
分层习题的设置为不同的学生提供了各自施展的舞台,同时也体现数学知识生活化,开放的山西地形图,不仅拓宽了学生的思路,使数学同学生的课外知识配合,而且培养了学生估算的能力,更建立起了学科之间的联系,进一步培养了学生学习数学的兴趣。
全课总结反思体验。
这节课我们学习了什么?你有哪些收获?
小结:面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。
作业。
平行四边形的面积教案篇四
本课为人民教育出版社《义务教育数学五年级标准实验教材》第一课第五单元“平行四边形区域”。平行四边形面积的计算是基于学生对矩形和正方形面积计算公式的掌握和灵活运用,以及对平行四边形特点的理解。在教材的编排上,注重让学生体验知识探索的过程,使学生不仅掌握面积计算的方法,而且参与面积计算公式的推导过程。在操作中,他们积累了基本的数学思维方法和基本的活动经验,完成了新知识的建构。本课首先通过具体情况,提出了计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何解决它,让学生觉得有必要学习新的知识;第二,培养学生独立操作和探索,使学生能够找到问题的解决方案;最后,让学生总结计算平行四边形面积的基本方法。根据学生不同的剪切方法,组织学生讨论这些剪切方法的共同特点,比较矩形与平行四边形的关系,推导出平行四边形面积的计算公式。
(教学目标)。
知识与能力目标:使学生运用数的平方法和填充法,探索平行四边形面积的计算公式,初步感受变换思想;使学生掌握平行四边形面积的计算公式,并能正确地利用该公式计算出平行四边形的面积。
过程和方法目标:通过操作、观察和比较,培养学生的空间概念,培养学生运用转化思维方法解决问题的能力;创造独立和谐的探究情境,使学生在不断的尝试中自我展示、自我激励、体验成功,激发求知欲,陶冶情操。
情感态度与价值目标:通过活动,培养学生的合作意识和探索创新精神,体验数学知识的奇妙。
【学习情况分析】。
平行四边形面积教学是在学生掌握并灵活运用矩形面积计算公式的基础上,了解平行四边形的特点而进行的。此外,对这部分知识的学习和应用,将为学生学习后的三角、梯形等平面图形的绘制打下良好的基础。由此可见,本课程是促进学生空间概念发展、渗透转化、等体积变形等数学思维方法的重要环节。学好这一部分对于解决生活中的实际问题有着重要的作用。这节课,让他们练习,边做边学,体验画平行四边形面积公式的过程,让孩子们认识到数学就在身边,培养学生的发散思维,进一步激发学生的学习思维,进一步激发学生学习数学的热情。
【教学辅助工具】两个相同的平行四边形、不规则图形、黑板、剪刀、多媒体、课件。
(教学过程)。
首先,创建情景并引入主题。
1.游戏介绍:小魔术师。老师展示不规则的图形。
老师:你能直接算出这个图形的面积吗?
老师:你能算出这个图形的面积吗?告诉我怎么用它?
老师:现在变成什么样了?你能算出这个图形的面积吗?如何计算矩形的面积?
2.小结:刚才同学们把不平整的部分剪掉,然后移动它来填补空白,然后把不规则的图形转换成学习矩形,这是一种重要的数学思维方法——变换。将未知图形转换为可识别的图形。什么改变了转换后的图形?什么是相同的?(形状变化,面积不变)。
平行四边形的面积教案篇五
教学完《平行四边形的面积》这一课自己感触颇多,有成功中的喜悦,也有不足中的遗憾,总结本节课的教学,有以*会。
一、成功之处。
1、联系生活,以解决小区中实际问题贯穿全课。
本课以停车位面积大小的问题,让学生引入到对平行四边形面积计算方法的探索中,通过猜测、转化、验证等得出平行四边形面积计算公式,并运用公式去解决小区中的实际问题。整节课在实际情景中学习新知,理解新知,巩固并运用新知。所创设的生活情景取材于学生的数学现实中,使学生感到亲切、有趣,使教学活动更富有生气和活力,更能使学生体验数学来源于生活,扎根于生活,应用于生活。
2、重视学生的自主探索,让学生经历数学学习的过程。
学习任何知识的途径是通过自己的实践活动去发现,这样的发现理解最深,也最容易掌握。在教学活动中,我设计了三个层次引导学生进行探究新知,首先是让学生根据已有知识和经验大胆猜测,接着亲自动手操作,验证自己的猜想是否正确,最后演示过程,强化结果,让学生在数学活动中自然地发现平行四边形和长方形之间的关系,最后归纳出平行四边形面积计算公式。在这里我留给学生足够的时间和空间去思考、去动手,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,学生主人翁的地位充分展现。而我则是一个引路人,是一个参与者,合作者,真正体现《数学课程标准》的新理念。
3、渗透数学方法,发展学生的数学能力。
在本节课的教学中,我注意引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力,在探索平行四边形面积的计算方法时,先引导学生能不能把一个平行四边形变成一个长方形呢?通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透‚转化‛的思想方法,另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法,这样以数学思想方法为主线,让学生亲身体验和理解‚转化‛思想,加强了新旧知识间的联系,有助于知识的系统化。在此过程中,学生经历了数学学习的过程,不但发展了数学思维,而且提高了数学能力。
二、存在不足。
1、为了学生的思维不受限制,使孩子们的主动性得到尽可能的发挥,在探究平行四边形面积公式时,我是让学生自己发现,自己总结,但由于学生紧张,而自己的引导和激励性语言又没有及时跟上,致使个别学生操作速度慢,跟不上课堂节奏,活动氛围不活跃,这方面的组织与调控能力我还要继续加强。
2、用数方格的方法数长方形正方形的面积在前面已经学过,因此在备课中我认为学生对数长方形‘平行四边形的面积应该是轻车熟路,很快数出来,但在实际教学中发现一些学生对数平行四边形的面积方法不熟,这块内容的教学多耽误了两分钟,以致于后面的练习有些仓促。因此,备课时一定要认真备各层次的学生水平,该引导时就引导,该放手时就放手。
三、反思中的所悟。
结合新课标,如何上好数学课,当中还有许多值得自己思考的问题。通过这个课例,感悟到要上出‘活泼‘愉快’实用的课来,就要求我们教师用学生的眼光理解教材,用新课标理念处理教材,用灵活的方法调控每个环节。教学中给孩子一些问题,让他自己去找答案,给孩子一些条件,让他自己去体验,给孩子一些机会,让他自己去创新。
平行四边形的面积教案篇六
平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。
五年级的学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
1、知识目标:使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。
2、能力目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。
3、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
教学重点:使学生理解和掌握平行四边形的面积的计算公式,并能正确地计算平行四边形的面积。
教学难点:使学生理解平行四边形面积公式的推导方法及过程。
1、情景导入(出示课件)。
板书:长方形的面积=长×宽。
正方形的面积=边长×边长。
1.用数方格的方法计算面积。
(1)课件出示教材第80页方格图:现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。说明要求:一个方格表示1平方米,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)合作完成,汇报结果,可展示学生填好的表格。
(3)观察表格的数据,你发现了什么?
通过学生讨论,得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等;这个平行四边形面积等于长方形的面积。
(1)引导:我们已经知道长方形的面积用长乘宽计算,平行四边形的面积怎样计算呢?请大家大胆猜测一下吧。
(3)引导解决方法:这只是我们的一种猜想,是不是这样呢,需要验证一下。能不能把平行四边形转化成长方形呢?实践操作是验证猜想的好办法。
(4)学生活动:拿出你们准备的平行四边形,以四人为一小组,用课前准备的平行四边形和剪刀进行剪拼,教师巡视指导。
(5)学生汇报演示剪拼的过程及结果。
(6)教师用课件演示剪—平移—拼的过程。
(8)出示讨论题,小组讨论。
(9)小组汇报交流,教师归纳:
把平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
3.教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
s=a×h。
s=a.h或s=ah。
1、出示例1、一块平行四边形花坛的底是6米,高是4米,它的面积是多少?
(1)读题并理解题意。
(2)学生试做,交流做法和结果。
s=ah=6×4=24(m2),。
答:它的面积是24平方厘米。
2、我们的生活中,有很多图形是不规则的,比如我国台湾省的地形图。台湾地形图的实际底大约是300千米,实际高大约是120千米,你有办法算出它的大概面积吗?(课件出示)。
s=a.h。
=300×120。
=36000(平方千米)。
答:台湾省的大概面积是36000平方千米。
这节课你是怎么学习的?你有哪些收获?
我们今天学习了平行四边形面积的计算方法,智慧爷爷想出题来考考大家。请听听:
1、猜谜游戏:有一个平行四边形,它的面积是12平方分米,请你猜一猜它的底和高各应是多少?看谁猜出的答案最多。
2、思考:用求平行四边形面积的方法,想一想三角形的面积可以怎样求?
平行四边形的面积教案篇七
生1:卡片。
生2:奖品。
(学生逐个上台从信封中拿出物品)
生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)
生2:我拿出的是一格格的东西,打算用它来量。
师: 我们给它一个名字,透明方格纸,用它量什么呢?
生2:我想用它量书本。
师: 书本的 (停顿)
生2:书面有几格?
师: 书的表面有几格其实就是它的面积,我们用1平方厘米的`方格纸数它的面积 。(板书:数)
生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。
师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它
这节课我们就用刚才这些学具来研究平行四边形的面积。
平行四边形的面积教案篇八
义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积》第一课时(包括教材80―81页例1、例2和“做一做”,练习十五中的第1―4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。
学情分析。
1、学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。
2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。
教学目标。
知识与技能。
过程与方法:
2、发展学生的空间观念。
情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。
教学重点和难点。
重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。
教学过程。
一、复习导入。
1、什么叫面积?常用的面积计量单位有那些?
2、出示一张长方形纸,他是什么形状?它的面积怎么算?
二、探究新知。
2、用数方格的方法计算面积。
(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
a、学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
b、请学生演示剪拼的过程及结果。
c、教师用教具演示剪。
平行四边形的面积教案篇九
《平行四边形的面积》教案商丽娟教学目标:通过探索,理解并掌握平行四边形面积计算公式,能运用公式解决实际问题。渗透图形间相互联系、互相转化的思想,初步学会用转化的方法解决问题。培养学生观察、分析、概括、推导能力,发展学生的空间观念。教学重点:通过探索,理解掌握平行四边形面积计算公式。教学难点:探究平行四边形面积计算公式。教具学具:多媒体课件、平行四边形、剪刀、直尺教学过程:一、导我们学过面积的有关知识吗?你能计算出下面图形的面积吗?课件依次显示:长方形、正方形。学生口答。课件显示:平行四边形(不标数据)需要老师给你们提供哪些数据呢?(提供数据)请同学们根据有关数据列出算式。(生列算式,指名板演。)二、学1、交流预设:5×4你能说说想法吗?(学生可能由长方形面积=长×宽想到平行四边形面积=长×宽)同学们看到平行四边形时,都想到了另外一个图形――?平行四边形和长方形有什么联系?请学生到台前利用学具把平行四边形拉成长方形。观察思考:平行四边形面积是不是等于长乘宽?预设:学生想不出时,引导学生观察平行四边形和长方形面积是否相等。说明:看到平行四边形想到长方形,运用了一种数学方法转化,只是转化过程中忽略了面积大小。没关系,我们有平行四边形(纸),可以帮助我们进一步来研究。2、探究出示要求:同桌合作,利用剪刀、直尺、铅笔等工具,把平行四边形转化成和它面积大小一样的.长方形。学生动手操作。指名学生展示,汇报交流。重点问题:沿着哪条线剪?可不可以不沿高剪?是不是只有这一种剪法?多媒体展示“剪移拼”过程,学生思考平行四边形和转化后的长方形关系,推导出平行四边形面积公式。三、练1、基础练习。看图口答。2、近似平行四边形草坪。提供高、底数据,求草坪面积大约是多少。指名板演,其余学生独立完成,后交流。四、结刚才,我们运用新知识帮老师解决了难题。我们学的是什么新知识?这就是我们本节所学平行四边形的面积。(板书课题)那平行四边形面积公式是什么?我们在探究过程中还运用了一种数学方法――(转化),希望以后运用转化探究出其它平面图形的面积。板书设计:平行四边形的面积长方形的面积=长×宽转化平行四边形面积=底×高
平行四边形的面积教案篇十
教学目标:
1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2.通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3.运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。
教学重点:
教学难点:
教学工具:
电子白板课件、平行四边形模型、剪刀、初步探究学习卡。
教学过程:
一、课前引入、渗透转化。
1.课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2.播放制作七巧板的视频。
3.出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1.电子白板导出两个花坛,比一比,哪个大?
2.揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1.利用数方格,初步探究。
2.出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
2.观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
4.引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1.课件出示例1。
六、课堂小结,反思回顾。
平行四边形的面积教案篇十一
1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
:学习卡,每个学生准备一个平行四边形。
一、导入。
1、观察主题图(课件出示),让学生找一找图中有哪些学过的图形。
3、引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。
1、用数方格的方法计算面积。
(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。
(2)独立完成。
(3)汇报结果。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)。
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
3、教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
4、出示例1。读题并理解题意。
三、巩固和应用。
1、判断,并说明理由。
2、计算。
四、体验。
五、作业:练习十五第1、2题。
六、板书设计。
s=ah。
平行四边形的面积教案篇十二
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
学习卡,每个学生准备一个平行四边形。
1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。
3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。
1.用数方格的方法计算面积。
(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。
(2)独立完成。
(3)汇报结果。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
(1)引导:如果不用数方格,那能不能计算出平行四边形的面积呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)。
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
3.教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
4.出示例1。读题并理解题意。
1、判断,并说明理由。
2、计算。
练习十五第1、2题。
s=ah。
平行四边形的面积教案篇十三
师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)
师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)
生活动后汇报如下:
长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米
(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米
(2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米
1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。
你觉得哪种更合理?能不能举个例子,证明哪种是错误的。
生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。
师:这位同学想到了平行四边形容易变形的'特征。大家觉得有道理吗?
生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。
师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)
生:(兴奋地)高!
师:现在,你觉得平行四边形的面积与它的什么有关?
生:我觉得平行四边形的面积与它的高有很大的关系。
3、师:用什么办法可以比较它们的面积大小呢?
生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。
师:变成长方形后,面积大小变了没有?
生:没有
师:那么要计算平行四边形的面积,应该怎么办?
生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。
生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。
师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。
师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。
根据学生反馈情况进行课件演示,出现几种拼法(略)
师:这几种剪拼方法有什么相同之处?
生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。
生:在剪拼过程中,图形的形状变了,面积不变。
师:为什么平行四边形的面积可以用“底乘高”来计算?
生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。
师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?
生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。
师:我们用s表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为s=ah。
师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?
平行四边形的面积教案篇十四
目标:
1.使学生初步认识四边形,了解四边形的特点,并能根据四边形的特点对四边形进行分类。
2.通过学生动手操作、小组讨论,培养学生独立思考、合作交流的学习精神。
3.通过主题图的教学,对学生进行热爱运动、积极参加体育锻炼的思想教育。
教学重点:
教学难点:
2.根据四边形的特点对四边形进行分类。
教学过程。
一、新课引入。
播放课件:四边形――由国之源提供。
平行四边形的面积教案篇十五
各位老师:
大家好!
今天我说课的内容是人教版小学数学五年级上册80页-81页的内容。本节课是第五单元《多边形的面积》的第一课时,它是在学生掌握了平行四边形的特征以及长方形、正方形的面积计算的基础上进行的,是进一步学习三角形面积、梯形面积知识的基础。教材利用数方格的方法计算图形的面积,再通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,从而推出新的图形面积计算公式。
(1)学生分析:
小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难,因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
基于以上对教材的分析以及结合学生的认知特点,我拟定了如下的教学目标:
1.学生通过数方格、割补的方法亲自探索平行四边形面积公式的过程。在操作、观察、比较,概括等活动中,渗透转化的数学思想方法,发展学生的空间观念。
2.会准确说出平形四边形的面积计算公式,并能正确的用字母表示。
3.能应用平行四边形的面积公式解决相应的实际问题,感受数学与生活的密切联系,并产生深厚的学习兴趣。
(2)教学重、难点。
重点:探究并推导平行四边形的计算公式,并能正确运用。
难点:通过转化发现长方形和平行四边形的联系,从而推导公式。
(3)教具准备。
1.发展迁移原则:运用迁移规律,注意从旧到新,引导学生在整理旧知识的基础上学习新知,体现“温故知新”的教学思想。
2.学生为主体,教师为主导的教学原则:针对几何知识教学的特点,本节课的教学内容以及小学生以形象思维为主,采用动手操作、自主探索、合作交流的学习方式,运用课件演示和实践操作,激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体,老师为主导的教学原则。
说学法。
学生的学习活动不仅是为了获得知识,而最重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标,在教学过程中,培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力。抽象概括能力逐步提高,教会学生学会学习。
为了能更好凸显“自主探究”的教学理念,我设计了几个环节:
(一)复习旧知,渗透转化。
新课开始,我先让学生回忆已经学过的平行四边形图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。
(二)兴趣导入,初次探究。
通过这些问题,促使学生积极动脑猜想,长方形的面积大家会求了,平行四边形的面积如何计算呢、从而引出本节课的课题:平行四边形的面积(板书)。
以前用数方格的方法求长方形的面积,数学是相通的,也可以用这种方法求平行四边形的面积,让学生数方格时,通过课件的动画让平行四边形变成一个长方形,凑成合格给学生初步印象,也让学生初步感知用数一数的方法求平行四边形面积的局限性,从而激发学生进一步寻求简单方法求平行四边形的面积。
(三)动手操作,探究归纳。
请学生拿出手中的平行四边形纸片,以小组为单位,讨论并动手操作,“能不能把平行四边形转化成我们以前学过的图形呢?”来引导学生。小组学习中,学生不受任何束缚,开支脑筋,各自想尽一切办法,这样不但达到大家参与,共同提高的学习效果,而且激活了学生的思维,激发了学生的创新意识,培养他们的自主合作,探究的精神。新课标指出:“学生是学习的主人,教师是学习的组织者、引导者和合作者。”这一环节的教学设计,我发挥教师的引导作用,倡导学生动手操作、合作交流。整个过程是学生在实践分组讨论中,不断完善提炼出来的,这样完全把学生置于学习的主体地位,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。
汇报交流时,让学生展示“剪——平移——拼”的转化过程,课件的动画演示,引导学生总结出:长方形和平行四边形的面积相等。长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等。由长方形的面积公式推导出平行四边形的面积公式,平行四边形的面积=底x高,公式用字母表示为s=ah。
(四)利用新知,理解内化。
对于新知需要及时组织学生巩固运用,才能得到理解与内化,我本着“重基础、验能力、拓思维”的原则,在练习中让学生利用新知解题并熟练掌握平行四边形的面积,在设计习题时,我把练习题的难度由易到难,从基础到拓展,而且题型多样化,有口算、填空、选择、判断、连线还有应用题,渗透“等底、等高的平行四边形面积相等。”
(五)课堂小结,浅谈收获。
说一说,这节课你有什么收获呢?让学生说出学到了什么,可以让学生对新知有个系统的概括加深。
我知道在讲课中还有很多不足,希望各位老师多多指导!
谢谢!
平行四边形的面积教案篇十六
教学内容:。
教学目标:。
2,通过操作,观察,比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析,综合,抽象,概括和解决实际问题的能力.
教学难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式.
教学方法:动手操作,小组讨论,启发,演示等教学方法.
教学准备:。
要求:底为6厘米,高为4厘米,最小的内角为45度,形状为:;。
2,剪刀,三角尺,文具(铅笔,橡皮等)。
3,板贴。
教学过程。
一,导入。
师:同学们,能告诉老师你最熟悉的平面图形吗。
生:长方形,正方形.
生:长方形的面积=长×宽正方形的面积=边长×边长。
二,体会"转化"的数学思想。
师:(出示图1)你能将这个图形变成我们熟悉的图形啊。
生:汇报:。
师:你发现了什么。
生:形状变了,面积不变.
师:(出示右图)这是什么图形(揭题:平行四边形)。
你能把这个图形变成你熟悉的图形吗。
生:能.
师:同学们,用你自己的方法把你的想法表示出来:。
学生尝试用自己的方式把平行四边形转化成长方形.
…………。
汇报:。
生1:我是画图的,。
生2:我是采用剪,拼的方法,先画一条高,沿着高剪下,移到另一边.
如图:。
生3:我也是采用剪拼法,但我和生2不一样,如图:。
师:看了三个同学的方法,你有什么收获啊。
生1:都采用了转化的方法.
生2:他们都要先画一条高,然后沿着高剪下,我想因为这样就可以得到直角.
生3:图形是转变了,面积不变.
二,动手测量,推导公式。
学生动手测量数据,进行计算.
………。
交流汇报:。
生1:我量的是长方形的长和宽,长是6厘米,宽是4厘米,面积是24平方厘米.因为长方形的面积就是平行四边形的面积,所以平行四边形的面积是24平方厘米.
生2:我量的是平行四边形的底和高,因为我认为平行四边形的底等于长方形的底,高等于长方形的宽,那么平行四边形的面积等于底×高.底是6厘米,高是4厘米,面积是24平方厘米.
师:两个同学都说的很好,同学们你们会了吗。
生:会了.
生:3×6=18(平方厘米)。
三,应用新知,深化理解。
2,。
3,综合练习。
生:等底等高,面积相等.
师:和这两个面积相等的平行四边形你还能在画几个吗。
生:有无数个,只要等底等高就行了.
四,引导回顾,师生总结。
板书设计:转化图形寻找联系推导公式。
五,课后反思:。
1,数学课堂教学中教什么比怎样教更重要,在平行四边形面积计算的教学中,我们是让学生掌握平行四边形面积的计算方法还是在平行四边形面积计算方法的教学渗透转化的数学思想,两者中我侧重于后者.
如何渗透数学思想呢从一开始,我让学生把不规则的图形变成已熟悉的图形,触动学生思维的联结点,凸显"转化"的动因.接着出示平行四边形,学生自然而然想到平行四边形可以转化成长方形.
在"你能将平行四边形转变成我们熟悉的图形吗"这个问题的驱动下,学生在静静的思考后,在"你能用自己的方法把你的想法表达出来吗"这一追问下,学生尝试画一画,剪一剪,拼一拼.操作的轨迹由想象操作到动手操作再到想象操作,学生的转化方法从模糊变为清晰.
3,在练习设计中知识的巩固和思想方法的应用并重.口算题是直接应用平行四边形面积计算公式,让学生进一步巩固知识.变式练习(右图)学生需要判断底和对应的高,此时我在一次提出可以把这个平行四边形看成怎样的长方形,从而能更深刻的理解底和高一定要对应的道理,对数学思想方法的认识也上升为数学思维策略,从而实现学生数学思维的提升.
平行四边形的面积教案篇十七
各位领导、数学界的专家们:
大家好!今天我们xx小学因为大家的莅临又一次满校生辉。我们向各位表示衷心的感谢!
感谢教科院的领导给我们提供了这一能和各位专家共同切磋有关数学教学的宝贵机会,也谢谢各位专家对我们数学教学的指导!
今天我对徐老师这节课作评析是班门弄斧,不当之处敬请各位领导、专家们指正:
首先,徐老师对这节课的教学目标的设计,既有知识技能目标又有过程性目标,充分体现了《课程标准》对学生在数学思考、解决问题以及情感与态度等方面的要求。
在教学过程中,徐老师一开始有一个谈话:每个小组有四个不同的图形,你们会计算它们的面积吗?小组合作选择一个计算一下。这一谈话实际就是设置了一个开放性的问题,这个问题参与性很强,激起了学生急于探究的欲望。在此徐老师给了学生充分的活动时间,在学生已有的知识经验基础之上,激发学生的学习积极性,向学生提供充分从事数学活动的机会,使他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得了广泛的数学活动经验,利用学生手中的纸片让他们自己先观察、再剪一剪、拼一拼,然后比较,讨论,分析,归纳,总结,多边形的面积,计算就解决了,而且还使学生初步认识了转化这种数学方法的利用,在此基础上再学习的平行四边形的面积计算就水到渠成,迎刃而解了。《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这也是新课改的重要思想。徐老师在数学教学的过程中充分体现了这一点,发挥了学生的主体作用,引导他们动手、动脑,进行探索、分析、归纳,降低了难度和坡度,使不同的学生都获得了成功的体验,使学生体验到数学活动充满着探索性的创造性,为学生的发展创造了一种宽松的环境。这也正是我们新课程标准所提倡的。在整个教学过程中,徐老师始终鼓励学生自己去发现,自己去思考,自己找到最好的解决办法,这样激发了学生学习的积极性,激活了学生的思维,让学生最大限度的参与到探索新知识的.教学过程中。概括说徐老师这节课体现了以下两大特点:
1、加强操作,让学生自主探索平行四边形面积计算公式,让学生经历平行四边形面积计算公式的探索过程是本节课的重要目标。本节课在平行四边形面积公式推导这一环节中,让学生采用动手实践、合作学习等多样化的学习方式去自主发现平行四边形的面积计算公式。在共同操作中,学生积极动手、动脑,从不同角度思考,将平行四边形转化成一个长方形,并通过观察讨论,发现了长方形与平行四边开之间的关系。这样既充分张扬了学生的创造个性,也为概括平行四边形面积计算公式提供了丰富的感性活动。
2、练习设计重视层次性,体现了对公式的利用和实践能力的培养。
这节课在练习反馈这一节上安排了5道题,总体上说,体现了对平行四边形面积计算公式的理解,既有层次性、实践性,又做到了前后照应;既重视让学生直接利用公式计算平行四边形的面积,更重视让学生计算一些没有直接告诉底和高或近似的平行四边形的面积,不但加强了学生的动手操作,也有利于让学生综合利用知识解决问题,培养学生的实践能力。从现实生活中发现和明确提出数学问题,然后找出解决问题的有效方法,体会数学在现实生活中的应用价值。
总的来说,徐老师在教学环节的安排上,既考虑了数学学科的特点,也考虑了学生的心理特征,能让学生充分利用已有知识经验去探索新知识,在教学环节的处理上有详有略,有扶有放,把教学的重心落在让学生对平行四边形面积计算公式的探索理解上,重视让学生经历知识的形成过程,有利于培养学生的学习能力。
徐老师这堂课是精彩的,因为她留给了学生充分的时空,使学生的思维之翼在科学的轨道上展翅翱翔,她教给了学生思想,重视了学生的学法。
谢谢大家!
平行四边形的面积教案篇十八
教学内容:教材第79~81页的内容。
知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
能力目标:在剪一剪,拼一拼、比一比中发展空间观念;在看一看,想一想中初步感知等积转化的思想方法,提高分析问题、解决问题的能力。
情感目标:通过活动,激发学习兴趣,培养互相合作、交流、探索的精神,感受数学与生活的密切联系。
教学重点:掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。
教学难点:初步认识转化的思想方法在研究平行四边形面积时的作用,并培养学生的分析、综合、抽象。概括能力和运用转化的方法解决实际问题的能力。
探索新知教学片段:
1、比一比,估一估。
生:一样大。
生:长方形比较大。
……。
师:大家都有不同的猜测,有很多同学都说一样大,那么,谁的想法正确呢?我们可以用什么方法来验证呢?四人小组讨论。
生:可以用数格子的方法。(将课本放展示台上。)我先数出整块的,然后这些剩下的小块拼一拼,还可以拼成整块的。
师:请大家看屏幕。(点击课件,边点击边说)。
师:用数方格的方法数数看。数一数,它们的面积各是多少?
……。
师:哦,你们数的结果是都是72平方米,说明……。
师:也就是……。
师:长方形的面积我们可以用公式来计算,那平行四边形的面积是不是也有计算公式呢,这就是我们今天要一起探讨的问题。(板书:平行四边形的面积)。
2、师:还有什么方法可以验证这两个图形的面积哪个比较大呢?
……。
生:我用割一割,补一补的方法,把平行四边形象这样剪开,然后再把它补到另一边去。
师:非常好,有自己的方法。下面我们用割补法来看看平行四边形的面积有多大?请同学们先仔细观察,然后说说你的'发现。
师点击课件,学生观察平行四边形变成长方形的过程……。
师:谁来说说自己的发现?
生:平行四边形的底和长方形的长一样长,平行四边形的高和长方形的宽一样长。
生:无数条。
师:所以,我们沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。(边说边演示平行四变形通过割补法转化成长方形的过程。)。
生:平行四边形的底=长方形的长,平行四边形的高=长方形的宽。
生:我觉得平行四边形的面积与它两条边的长度不完全有关系。因为老师黑板上第一个平行四边形与第三个平行四边形的两条边长度一样,但第一个的面积明显比第三个大。
6、师:刚才应用了“转化”的思想,大家都值得表扬。
(师板书“s=a×h”)。
8、师小结:面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。
9、实际运用。
师:知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。
(1)(出示例1)请大家做一做。
谁来说一说你是怎么做的?
师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?
学生回答,老师小结:求平行四边形的面积我们只要知道其中一组底和高就能求面积了。
(2)有一块地近似平行四边形,底是43米,高是20。1米。这块地的面积约是多少平方米?(得数保留整数)。
平行四边形的面积教案篇十九
教学过程:
一、复习旧知。
1、提问:怎样计算长方形的面积?(板书:长方形面积=长×宽)。
2、口算长方形的面积:长6cm,宽3cm。
3、出示平行四边形,提问:这是什么图形?指出它的底和对应的高。
4、揭示课题:我们已经知道了求长方形的面积公式,那平行四边形的面积该怎样计算呢?这节课我们就来一起研究平行四边形的面积的计算方法。(板书:平行四边形的面积)。
二、探究新知。
3、课件演示验证。
5、总结:任何一个平行四边形都可以转化成一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与原来平行四边形的底相等;这个长方形的宽与原来平行四边形的高相等。因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。(板书:平行四边形面积=底×高)。
6、介绍字母公式,每个字母的意义。(板书:s=a×h或s=a·h或s=ah)。
三、巩固练习。
1、试一试。
2、练一练1、2、3、4。
四、拓展提高。
五、课堂小结。
这节课你有什么收获?
六、板书设计。
s=a×h=a·h=ah。
平行四边形的面积教案篇二十
教学目标:1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括能力,发展学生的空间观念。
教学过程:
一、导入。
1、用数方格的方法计算面积。
(1)我们已经知道可以用数方格的方法来得到一个图形的面积,请大家拿出你准备好的方格纸,用数方格的方法来数出方格纸中平行四边形和长方形的面积。(说明要求:一个方格代表1平方厘米,不满一格的都按半格算)把数出的数据填在方格纸的下面。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?(平行四边形与长方形的底与长、高与宽及面积分别相等,这个平行四边形的面积等于它的底乘高,这个长方形的面积等于它的长乘宽。
(1)拿出你准备好的平行四边形和剪刀,自己想办法把平行四边形变成一个长方形。
(2)请学生演示剪拼过程及结果。教师演示剪--平移--拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请大家观察,拼出的长方形和原来的平行四边形,你发现了什么?同桌互相说一说,可围绕以下3个问题讨论:
(4)同学交流,教师归纳相机板书。
(5)观察面积公式,要求平行四边形的面积必须知道哪两个条件?
s=ah(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?(渗透转化思想)。
三、巩固和应用。
1、出示例1,读题并理解题意。学生试做,交流做法和结果。
2、强调用公式计算的格式,s=ah=6*4=24(平方米)。
3、练习,82页1、2。
4、一块平行四边形钢板,底是15米,高是底的1。2北,这块钢板的面积是多少?
5、82页3。
6、出示两个同底等高的平行四边形,让学生讨论:面积相等吗。为什么?
四、小结:通过本堂课的学习,你有哪些收获?对于。
s=ah。
教学反思:1、数方格的方法有些学生忘了,课前铺垫不够好,有些耽误时间了。
2、对于学生动手操作过程中个别人出现的错误情况,如,把平行四边形多出的部分剪掉变成了长方形,因怕耽误时间,没能让他展示,并纠正。
3、让学生观察拼出的长方形与平行四边形有什么关系时,问题设计不好,学生不知道如何回答,因此耽误了时间,以至与后面习题做的也比较少。
平行四边形的面积教案篇二十一
钱老师这节课的教学内容是人教版五年级数学上册中的《平行四边形的面积》,教学目标是使学生在理解的基础上掌握平行四边形面积的计算公式,并能正确计算平行四边形的面积。同时,通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化的思想,并培养学生的观察和分析能力。
《平行四边形的面积》这节课的教学重点在于让学生体验面积公式的推导过程。钱老师在教学过程中,很好地体现了这一点。她在学生已有的知识经验基础之上,导入部分通过复习以前所学习的四边形、四边形的面积公式以及计算不规则图形的面积等环节,激发了学生的学习积极性,给学生充分的营造了学习氛围,使他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得了广泛的数学活动经验,利用学生课前准备的平行四边形模片,让他们自己先观察、再剪一剪、拼一拼,然后比较,讨论,分析,归纳,总结,在了解长方形面积公式的基础上,平行四边形面积的计算就解决了,而且还使学生初步认识了割补法这种转化思想的运用,在此基础上再学平行四边形的面积计算就水到渠成,迎刃而解了。
“学生是学习的主人,教师是学习的组织者、引导者和合作者。”在整个教学过程中,钱老师多次鼓励学生自己去发现,自己去思考,自己找到最好的解决办法,这样不但激发了学生学习的积极性,激活了学生的思维,还让学生最大限度的参与到了探索新知识的教学过程中。
这节课的最大特点就是重操作,让学生自主探索平行四边形面积计算公式,让学生亲身经历平行四边形面积计算公式的探索过程是钱老师本节课的重要目标。在平行四边形面积公式推导这一环节中,教师让学生采用动手实践的学习方式去自主发现平行四边形的面积计算公式。在操作中,学生积极动手、动脑,从不同角度思考,将平行四边形转化成一个长方形,并通过观察讨论,发现了长方形与平行四边形之间的相同点和不同点。这样既充分张扬了学生的创造个性,也为概括平行四边形面积计算公式提供了丰富的感性活动。通过这样一个动手操作的拼剪环节,使其课堂充满了实效性,让学生“知其然,还知其所以然。”
另外,本节课最吸引我的地方就是巩固练习与学习单的设计有层次、有梯度。巩固练习针对本班学生不同的学习程度,也就是针对具体的学情,将学生、习题分层,对不同的学生提出不同的学习要求。在钱老师这堂课上真真体现了“让不用的人在数学上得到不同的教育”,这一核心理念。学习单切合实际教学进度适时出现,不但体现了本节课的教学内容,而且突出了本节课的教学重点。让我深刻认识到“说一百句,不如一张学习单简单有效。”
其他方面,在这次整个听课过程中,我发现教师在课堂上的教学修养与教学内容同样重要,一句“请回”,让我对讲台上的老师肃然起敬,我需要这样的语言来美化我的课堂。
平行四边形的面积教案篇二十二
教材分析:
平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。
几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。
教学目标:
3、培养学生初步的空间观念。
4、培养学生积极参与、团结合作、主动探索的精神。
教学准备:学具、课件。
教学过程:
一、质疑引新。
1、显示长方形图。
2、电脑展示长方形变形为平行四边形。
原来的长方形变成了什么图形?它的面积怎样求呢?
二、引导探究。
(一)、铺垫导引。
出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。
小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?
实验、操作(小组合作):把后两幅图转化成长方形。
电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。
集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)。
讨论:
剪拼前后,图形的形状变了没有?面积有没有变?
做了这个实验你想到了什么?
(二)、实验探索。
学生实验操作。
1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。
2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。
3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。
结合学生发言提问:
在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。
(三)总结归纳。
问:
2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)。
追问:要求平行四边形的面积,必须知道哪两个条件?
用字母表示公式。
学生自学p44~p45有关内容。
集体交流:s=a×h。
s=a·h。
s=ah。
教师强调乘号的简写与略写的方法。
三、深化认识。
1、验证公式。
2、应用公式。
a) 例题。
学生列式解答,并说出列式的根据。
b) 做练一练。
四、巩固练习。
底5厘米,高3.5厘米 底6厘米,高2厘米。
2、计算下面图形的面积哪个算式正确?(单位:米)。
3×8 3×6 4×8 6×8 3×4 4×6。
面积:56平方厘米。
底:8厘米。
4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
以小组为单位探讨多种想法。
五、总结全课(电脑显示、学生口答)。
把一个平行四边形沿着高剪成两部分,通过( )法,可以把这两部分拼成一个( )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于( ), 用字母表示平行四边形的面积公式( )。
平行四边形的面积教案篇二十三
今天下午有幸听了白老师的讲课,讲了一节五年级数学上册关于“平行四边形的面积”的课程,从听课中可以总结出一下几点:
一、课堂以复习旧知加情境展现导入,首先复习了学过的平面图形,了解长方形和正方形的面积以及平行四边形的特点,还针对性的找到平行四边形的底和高的长度为本节课学习做好的准备工作,其次是利用校园门口的两个花坛比较大小来提出问题,从而开始本节课额学习。
二、在使用第一种方法——数方格来计算平行四边形的面积时,让学生自读题目要求和说明,找到关键的点。接着出现课本上的填表格数据,通过完成表格进行汇报数据,可以横着汇报也可以竖着汇报,同两次汇报让学生发现特点和关系,初步知道平行四边形的面积计算。
三、进行验证推理时,出示了三个问题让学生进行动手操作发现关系,操作过后让学生就三个问题进行回答,发现长方形和平行四边形的关系,教师又接着提问:为什么一定要沿着高剪下来呢?深入挖掘知识的内涵,为学生提供方法,掌握知识的本质。
四、教师设计练习多样化,从各个方面考察了本节课的内容,首先是练习提的设计层次清晰,以闯关的方式进行,从基础练习包括计算面积和寻找相对应的底和高,到知道面积求底或高,题中渗透着不同的知识点,最后又有难度提升来判断不同平行四边形的面积关系,展示长方形和平行四边形的转换过程,让学生明白变化量和不变量,知识方方面面都有突破。
建议:
1、用数方格的方法进行计算面积时稍微解释一下数的方法,有学困生并不会数方格也不知道边长是多少,高的位置在哪。
2、练习题的设计有点跳跃,梯度可以稍微小一些,较难的题放到后面,先开始练习一下基础的题,再着手一些难题,过渡太大的话,可能对于学困生来说不好掌握,理解上也有困难。不知道该如何下手计算。
平行四边形的面积教案篇二十四
生1:卡片。
生2:奖品。
……
(学生逐个上台从信封中拿出物品)
生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)
生2:我拿出的是一格格的东西,打算用它来量。
师: 我们给它一个名字,透明方格纸,用它量什么呢?
生2:我想用它量书本。
师: 书本的 ……(停顿)
生2:书面有几格?
师: 书的表面有几格其实就是它的面积,我们用1平方厘米的方格纸数它的面积 。(板书:数)
生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。
师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它
这节课我们就用刚才这些学具来研究平行四边形的面积。
教学反思
不!俗话说:磨刀不误砍柴功。我认为直接出示学具,不能引起学生对学具的重视,对其作用更是模棱两可,将为小组合作学习埋下“隐患”。学生面对一堆学具,面对要完成的任务手足无措,不知该从哪下手。这样岂不是更浪费时间,或者学具将失去它的作用,平形四边形、三角形的面积公式无法推导。
……
(学生动手操作,不久就纷纷举手)
生1:老师,我把对角一剪就变成了两个三角形。
生2:老师,我剪出的三角形两个一样的.。
师: 你们真厉害!对角一剪就变成了两个完全一样的三角形,你能从平行四边形的
面积公式推导出三角形的面积公式吗?
(学生小组讨论)
生3:就是除以2。
师: 你能完整的说一说什么除以2吗?
生3:平行四边形的面积除以2。用字母表示:s=ab2。
生4:我能把它剪成两个梯形教后反思
现在使用的教材存在着许多的弊端,教师如果只是根据教材按部就班有时就出现事倍功半的现象,而且难以达到预定的效果。而如果教师能运用教材进行灵活的运用,或是根据学生的特点重新组织教材,创设更有效的更能引起学生注意的课题导入设计、问题设计,让学对本节课产生极高的兴趣,让学生自己去发现问题,去解决问题,使教师的教和学生的学达到理想的境界,正如肖川教授所说的“使我们的教学达到完美的教育。”
【本文地址:http://www.pourbars.com/zuowen/14569734.html】