一元二次方程教案(精选15篇)

格式:DOC 上传日期:2023-11-24 09:24:17
一元二次方程教案(精选15篇)
时间:2023-11-24 09:24:17 小编:琉璃

教案的编写可以帮助教师更好地组织课堂教学,提高学生的学习积极性和主动性。编写教案还需要教师具备教学改革的思维和能力,关注教学的创新和发展。这些教案都是经过实际教学验证的,具有一定的可行性和实用性。

一元二次方程教案篇一

是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

教学目的。

2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点:。

重点:。

一元二次方程教案篇二

2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:

1.教材分析:

1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析。

是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

一元二次方程教案篇三

解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。直接开平方法很简单,在这里不做过多的介绍。为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。在解一元二次方程的几种方法中,均需要用到转化的思想方法。如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。

1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。

2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。

1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。

在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。

重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。

难点:根据方程的特点灵活选择适当的方法解一元二次方程。

探索发现,讲练结合。

一元二次方程教案篇四

1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.。

3.解决一些概念性的题目.。

4.态度、情感、价值观。

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。

一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.。

学生活动:列方程。

问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”

整理、化简,得:__________。

问题(2)如图,如果,那么点c叫做线段ab的黄金分割点。

整理,得:________。

学生活动:请口答下面问题。

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或与以前多项式一样只有式子?

老师点评:

(1)都只含一个未知数x;

(2)它们的最高次数都是2次的;

(3)都有等号,是方程.。

解:去括号,得:

移项,得:4x2-26x+22=0。

其中二次项系数为4,一次项系数为-26,常数项为22.。

解:去括号,得:

x2+2x+1+x2-4=1。

移项,合并得:2x2+2x-4=0。

其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.。

教材p32练习1、2。

分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.。

证明:2-8+17=(-4)2+1。

∵(-4)2≥0。

∴(-4)2+10,即(-4)2+1≠0。

本节课要掌握:

一元二次方程教案篇五

1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.。

3.解决一些概念性的题目.。

4.态度、情感、价值观。

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.。

一、复习引入。

学生活动:列方程.。

问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”

整理、化简,得:__________.。

问题(2)如图,如果,那么点c叫做线段ab的黄金分割点.。

整理,得:________.。

二、探索新知。

学生活动:请口答下面问题.。

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或与以前多项式一样只有式子?

解:去括号,得:

移项,得:4x2-26x+22=0。

其中二次项系数为4,一次项系数为-26,常数项为22.。

解:去括号,得:

x2+2x+1+x2-4=1。

移项,合并得:2x2+2x-4=0。

其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.。

三、巩固练习。

教材p32练习1、2。

四、应用拓展。

分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.。

证明:2-8+17=(-4)2+1。

∵(-4)2≥0。

∴(-4)2+10,即(-4)2+1≠0。

五、归纳小结(学生总结,老师点评)。

本节课要掌握:

六、布置作业。

一元二次方程教案篇六

一、出示学习目标:

2.通过自学探究掌握裁边分割问题。

二、自学指导:(阅读课本p47页,思考下列问题)。

1.阅读探究3并进行填空;

2.完成p48的思考并掌握裁边分割问题的特点;

设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:

由中下层学生口答书中填空,老师再给予补充。

思考:如果换一种设法,是否可以更简单?

设正中央的长方形长为9acm,宽为7acm,依题意得。

9a·7a=(可让上层学生在自学时,先上来板演)。

效果检测时,由同座的同学给予点评与纠正。

9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)。

注意点:要善于利用图形的平移把问题简单化!

三、当堂训练:

(只要求设元、列方程)。

一元二次方程教案篇七

1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。

2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。

3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。

重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。

(一)导入新课。

生:老师,这是雷锋叔叔。

生:是的老师。

生:想。

师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。

(二)新课教学。

师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用ac来表示上部,bc来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。

(下去巡视)。

(三)小结作业。

师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。

xx。

xx。

一元二次方程教案篇八

1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。

2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。

3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。

重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。

难点:找对题目中的数量关系从而列出一元二次方程。

(一)导入新课。

生:老师,这是雷锋叔叔。

生:是的老师。

生:想。

师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。

(二)新课教学。

师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用ac来表示上部,bc来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。

(下去巡视)。

(三)小结作业。

师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。

一元二次方程教案篇九

理解并掌握一元二次方程求根公式的推导过程,能正确、熟练地运用公式法解一元二次方程。

【过程与方法】。

经历探究求根公式的过程,发展合情推理能力,提高运算能力并养成良好的运算习惯。

【情感、态度与价值观】。

通过公式法解一元二次方程,感受解法的多样性,在学习活动中获取成功的体验。

【教学重点】。

【教学难点】。

(一)引入新课。

配方,得。

(四)小结作业。

作业:课后练习题,试着用多种方法解答。

四、板书设计。

一元二次方程教案篇十

(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

(2)会用因式分解法解一元二次方程

【教学重点】一元二次方程的概念、一元二次方程的一般形式

【教学难点】因式分解法解一元二次方程

【教学过程】

(一)创设情景,引入新课

由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

(二)新授

1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)

2:一元二次方程的一般形式(形如ax+bx+c=0)

3:讲解例子

4:利用因式分解法解一元二次方程

5:讲解例子

6:一般步骤

(三)小结

(四)布置作业

一元二次方程教案篇十一

1、认知目标:

1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二。教学重难点。

重点:二元一次方程组及其解的概念。

难点:用列表尝试的方法求出方程组的解。

三。教学过程。

(一)创设情景,引入课题。

(1)如果设本班男生x人,*y人,用方程如何表示?(x+y=40)。

(2)这是什么方程?根据什么?

2、男生比*多了2人。设男生x人,*y人。方程如何表示?x,y的值是多少?

3、本班男生比*多2人且男*共40人。设该班男生x人,*y人。方程如何表示?

两个方程中的x表示什么?类似的两个方程中的y都表示?

象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4、点明课题:二元一次方程组。

[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]。

(二)探究新知,练习巩固。

(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]。

(2)练习:判断下列是不是二元一次方程组:

x+y=3,x+y=200,

2x-3=7,3x+4y=3。

y+z=5,x=y+10,

2y+1=5,4x-y2=2。

学生作出判断并要说明理由。

2、二元一次方程组的解的概念。

(1)由学生给出引例的答案,教师指出这就是此方程组的解。

(2)练习:把下列各组数的题序填入图中适当的位置:

x=1;x=-2;x=;-x=。

y=0;y=2;y=1;y=。

方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。

2x+3y=2。

(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。

(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。

y=0。55x+2a=2y。

(三)合作探索,尝试求解。

现在我们一起来探索如何寻找方程组的解呢?

1、已知两个整数x,y,试找出方程组3x+y=8的解。

2x+3y=10。

学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

提炼方法:列表尝试法。

一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。

2、据了解,某商店出售两种不同星号的红双喜牌乒乓球。其中红双喜二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

(1)设该同学红双喜二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

由学生独立完成,并分析讲解。

(四)课堂小结,布置作业。

1、这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)。

2、你还有什么问题或想法需要和大家交流?

3、作业本。

教学设计说明:

1、本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

2、让学生成为课堂的真正主体是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

3、本课在设计时对教材也进行了适当改动。例题方面考虑到数*时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

过程与方法目标:

经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;

情感与态度目标。

2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

重点:二元一次方程的概念及二元一次方程的解的概念。

难点。

1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。

2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

创设情境导入新课。

1、一个数的3倍比这个数大6,这个数是多少?

师生互动探索新知。

1、发现新知。

根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)。

2、巩固新知。

判断下列各式是不是二元一次方程(1)(2)(3)(4)。

比较一元一次方程和二元一次方程的相同点和不同点。

相同点:方程两边都是整式,含有未知数的项的次数都是一次。

如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。

一元二次方程教案篇十二

(2)掌握一元二次方程的.一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

(一)创设情景,引入新课。

由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

(二)新授。

1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)。

任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零。

3:讲解例子。

5:讲解例子。

6:一般步骤。

(三)小结。

(四)布置作业。

一元二次方程教案篇十三

一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。

2、教学目标及确立目标的依据。

九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。

知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。

德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。

3、重点,难点及确定重难点的依据。

“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。

在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。

教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。

采用投影仪。

1、新课导入:

(1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)。

(2)列方程解应用题的方法,步骤?(并引例打基础)。

课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的)。

设出求知数,列出代数式,并根据等量关系列出方程。

一元二次方程教案篇十四

1、知识与能力目标:要求学生会根据实际问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

2、过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

3.、情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识并与校园绿化相结合。

教学重点、难点。

教学重点:通过实际问题模型建立一元二次方程的概念,认识一元二次方程一般形式.

2。难点:通过实际问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。

教学过程:

(一)创设情景,导入新课。

分析:设长方形绿地的宽为x米,则列方程,

整理可得。

分析:设长方形绿地的宽为x米,则列方程,

整理可得。

【设计意图】因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,并激发学生环保意识。

一元二次方程教案篇十五

(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

【教学过程】。

(一)创设情景,引入新课。

由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

(二)新授。

1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)。

任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零。

3:讲解例子。

5:讲解例子。

6:一般步骤。

(三)小结。

(四)布置作业。

【本文地址:http://www.pourbars.com/zuowen/14568243.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map